• 제목/요약/키워드: Co-occurrence of Keywords

검색결과 93건 처리시간 0.024초

Trend Analysis on Korea's National R&D in Logistics

  • Jeong, Jae Yun;Cho, Gyusung;Yoon, Jieon
    • 한국해양공학회지
    • /
    • 제34권6호
    • /
    • pp.461-468
    • /
    • 2020
  • This study examined how national research and development (R&D) in the domain of logistics has changed recently in the Republic of Korea. We conducted basic statistical analysis and social network analysis on 5,327 logistics-related R&D projects undertaken during 2005-2019. Data for performing these analyses were collected from the R&D database of the National Science and Technology Information Service (NTIS). By constructing a co-occurrence matrix with keywords, we conducted degree and betweenness centrality analysis and visualized the network matrix to display a cluster map. This study presents our observations related to the following findings: (1) the chronical trends of logistics R&D, (2) focused fields of logistics R&D, (3) the relations among keywords, and (4) the characteristics of logistics R&D. Finally, we suggest policy implications to boost and diversify logistics R&D.

Science mapping of catalyst support for gas adsorption applications

  • Mazlee M. N.;Zunairah H.
    • Advances in materials Research
    • /
    • 제13권3호
    • /
    • pp.203-210
    • /
    • 2024
  • Science mapping is a visual representation of the structure and dynamics of scholarly knowledge. Gas adsorption on catalyst supports is a crucial process in many catalytic reactions. The R package "Bibliometrix" and VosViewer software were employed for science mapping analysis. The results show that the upward trend but fluctuates from year to year for both annual scientific production and average article citations per year. Co-occurrence of the keywords were used to identify the primary fields of study and to map the existing state of research. Trending topics reveal some interesting features that support the growth of research in this field and are associated with emerging disciplines or areas of study that have not been extensively explored.

텍스트 마이닝을 활용한 신문사에 따른 내용 및 논조 차이점 분석 (A Study on Differences of Contents and Tones of Arguments among Newspapers Using Text Mining Analysis)

  • 감미아;송민
    • 지능정보연구
    • /
    • 제18권3호
    • /
    • pp.53-77
    • /
    • 2012
  • 본 연구는 경향신문, 한겨레, 동아일보 세 개의 신문기사가 가지고 있는 내용 및 논조에 어떠한 차이가 있는지를 객관적인 데이터를 통해 제시하고자 시행되었다. 본 연구는 텍스트 마이닝 기법을 활용하여 신문기사의 키워드 단순빈도 분석과 Clustering, Classification 결과를 분석하여 제시하였으며, 경제, 문화 국제, 사회, 정치 및 사설 분야에서의 신문사 간 차이점을 분석하고자 하였다. 신문기사의 문단을 분석단위로 하여 각 신문사의 특성을 파악하였고, 키워드 네트워크로 키워드들 간의 관계를 시각화하여 신문사별 특성을 객관적으로 볼 수 있도록 제시하였다. 신문기사의 수집은 신문기사 데이터베이스 시스템인 KINDS에서 2008년부터 2012년까지 해당 주제로 주제어 검색을 하여 총 3,026개의 수집을 하였다. 수집된 신문기사들은 불용어 제거와 형태소 분석을 위해 Java로 구현된 Lucene Korean 모듈을 이용하여 자연어 처리를 하였다. 신문기사의 내용 및 논조를 파악하기 위해 경향신문, 한겨레, 동아일보가 정해진 기간 내에 일어난 특정 사건에 대해 언급하는 단어의 빈도 상위 10위를 제시하여 분석하였고, 키워드들 간 코사인 유사도를 분석하여 네트워크 지도를 만들었으며 단어들의 네트워크를 통해 Clustering 결과를 분석하였다. 신문사들마다의 논조를 확인하기 위해 Supervised Learning 기법을 활용하여 각각의 논조에 대해 분류하였으며, 마지막으로는 분류 성능 평가를 위해 정확률과 재현률, F-value를 측정하여 제시하였다. 본 연구를 통해 문화 전반, 경제 전반, 정치분야의 통합진보당 이슈에 대한 신문기사들에 전반적인 내용과 논조에 차이를 보이고 있음을 알 수 있었고, 사회분야의 4대강 사업에 대한 긍정-부정 논조에 차이가 있음을 발견할 수 있었다. 본 연구는 지금까지 연구되어왔던 한글 신문기사의 코딩 및 담화분석 방법에서 벗어나, 텍스트 마이닝 기법을 활용하여 다량의 데이터를 분석하였음에 의미가 있다. 향후 지속적인 연구를 통해 분류 성능을 보다 높인다면, 사람들이 뉴스를 접할 때 그 뉴스의 특정 논조 성향에 대해 우선적으로 파악하여 객관성을 유지한 채 정보에 접근할 수 있도록 도와주는 신뢰성 있는 툴을 만들 수 있을 것이라 기대한다.

네트워크분석을 통한 직업건강간호학회지 논문의 지식구조 분석 (Knowledge Structure of the Korean Journal of Occupational Health Nursing through Network Analysis)

  • 권선영;박은정
    • 한국직업건강간호학회지
    • /
    • 제24권2호
    • /
    • pp.76-85
    • /
    • 2015
  • Purpose: The purpose of this study was to identify knowledge structure of the Korean Journal of Occupational Health Nursing from 1991 to 2014. Methods: 400 articles between 1991 and 2014 were collected. 1,369 keywords as noun phrases were extracted from articles and standardized for analysis. Co-occurrence matrix was generated via a cosine similarity measure, then the network was analyzed and visualized using PFNet. Also NodeXL was applied to visualize intellectual interchanges among keywords. Results: According to the results of the content analysis and the cluster analysis of author keywords from the Korean Journal of Occupational Health Nursing articles, 7 most important research topics of the journal were 'Workers & Work-related Health Problem', 'Recognition & Preventive Health Behaviors', 'Health Promotion & Quality of Life', 'Occupational Health Nursing & Management', 'Clinical Nursing Environment', 'Caregivers and Social Support', and 'Job Satisfaction, Stress & Performance'. Newly emerging topics for 4-year period units were observed as research trends. Conclusion: Through this study, the knowledge structure of the Korean Journal of Occupational Health Nursing was identified. The network analysis of this study will be useful for identifying the knowledge structure as well as finding general view and current research trends. Furthermore, The results of this study could be utilized to seek the research direction in the Korean Journal of Occupational Health Nursing.

Analysis of Reference Inquiries in the Field of Social Science in the Collaborative Reference Service Using the Co-Word Technique

  • 조재인
    • 한국문헌정보학회지
    • /
    • 제49권1호
    • /
    • pp.129-148
    • /
    • 2015
  • This study grasped the true nature of the inquiry domain by analysing the requests for collaborative reference service in the social science field using the co-word technique, and schematized the intellectual structure. First, this study extracted 748 uncontrolled keywords from inquiries for reference in the field of social science. Second, calculated similarity indices between the words on the basis of co-occurrence frequency, and performed not only clustering but also MDS mapping. Third, to grasp the difference in inquiries for reference by period, dividing the period into two parts, and performed comparative analysis. As a result, there formed 5 clusters and "Korea Education" showed an overwhelming size with 40.3% among those clusters. The result of the analysis through the period division showed there were many questions about "Education" during the first half, while a lot of inquiries with focus on "welfare and business information" during the second half.

데이터 스칼라십: 데이터 저널과 데이터 리포지토리를 중심으로 (Data Scholarship: Data Journals and Data Repositories)

  • 박형주
    • 문화기술의 융합
    • /
    • 제10권1호
    • /
    • pp.443-451
    • /
    • 2024
  • 본 연구는 데이터 스칼라십을 이해하기 위하여 데이터 논문으로 색인되는 저널의 지적 구조를 분석 및 시각화하고 데이터 리포지토리의 운영을 비교하였다. 동료 평가(peer review) 유형을 살펴보고, 공동 출현 분석(co-occurence analysis) 및 네트워크 분석(network analysis)을 실시하였다. WoS에 데이터 논문으로 색인되는 상위 10위 저널은 전통적인 유형과 데이터 논문 유형을 혼재해서 발간하고 있었다. DCI에 색인되는 데이터 리포지토리는 대부분 북미 및 유럽 국가에서 운영하고 있다. 국내의 데이터 리포지토리는 대부분 연구원에서 운영하고 있다. 본 연구의 결과는 데이터 저널, 데이터 리포지토리 등 데이터 스칼라십의 관행을 이해하는 데 도움이 되기를 바란다.

트위터에서의 COVID-19와 관련된 반시민성 주제 탐색: 혐오 대상 및 키워드 분석 (Investigating Topics of Incivility Related to COVID-19 on Twitter: Analysis of Targets and Keywords of Hate Speech)

  • 김규리;오찬희;주영준
    • 정보관리학회지
    • /
    • 제39권1호
    • /
    • pp.331-350
    • /
    • 2022
  • 본 연구는 코로나바이러스감염증-19 (이하 코로나19)로 인해 생겨난 코로나19 반시민성 주제와 코로나19 혐오 정서를 파악하기 위해 소셜미디어 중 하나인 트위터의 코로나19 관련 게시물을 분석하였다. 2019년 12월 1일부터 2021년 8월 31일까지 21개월 동안 작성된 코로나19 관련 혐오 대상별(지역, 공공시설 혐오, 특정 인구 집단 혐오, 종교 혐오) 게시물 수집 및 전처리를 진행하여 총 63,802개의 게시물을 분석하였다. 혐오 대상별 빈도 분석, 다이나믹 토픽 모델링, 키워드 동시 출현 네트워크 분석 기법을 통하여 혐오 대상별 반시민성 주제와 혐오 키워드를 파악하였다. 첫째, 빈도 분석 결과, 지역, 공공시설 혐오는 상대적으로 증가하는 추세를 보이고 특정 인구 집단과 종교 혐오는 상대적으로 감소하는 추세를 확인할 수 있었다. 둘째, 다이나믹 토픽 모델링 분석 결과, 지역, 공공시설 혐오는 '대구, 경북지방 혐오', '지역 간 혐오', '공공시설 혐오'로 나타났고, 특정 인구 집단 혐오는 '중국 혐오', '바이러스 전파자', '실외(야외)활동 제재'로 나타났으며, 종교 혐오는 '신천지', '기독교', '종교 내 감염', '방역 의무 거부', '확진자 동선 비난'으로 나타났다. 셋째, 키워드 동시 출현 네트워크 분석 결과, 지역, 공공시설 혐오(코로나, 대구, 확진자, 신천지, 경북, 지역), 특정 인구 집단 혐오(코로나바이러스, 우한폐렴, 우한, 중국, 중국인, 사람, 입국, 금지), 종교 혐오(신천지, 코로나, 교회, 대구, 확진자, 감염) 등을 핵심 키워드로 확인할 수 있었다. 본 연구는 소셜 미디어를 활용한 국내 코로나19 혐오 대상 및 키워드 파악을 통해 코로나19 관련한 대중의 반시민성 여론을 파악하고자 하였다. 특히 기존의 선행연구에서 시도하지 않았던 주제인 코로나19 관련 혐오에 데이터 마이닝기법을 이용하여 소셜 미디어에서 표출하는 대중의 반시민성 주제와 혐오 정서 탐색은 대중들의 여론을 파악하는 것이 의의가 있다. 더불어 본 연구 결과는 포스트 코로나 시대를 대비하는 문화적 소통 방안의 제도 및 정책 수립 기여를 위한 기본 자료에 기초할 수 있다는 점에서 실질적 함의를 시사한다.

Z세대 패션에 대한 소셜미디어의 빅데이터 분석 (Social media big data analysis of Z-generation fashion)

  • 성광숙
    • 한국의상디자인학회지
    • /
    • 제22권3호
    • /
    • pp.49-61
    • /
    • 2020
  • This study analyzed the social media accounts and performed a Big Data analysis of Z-generation fashion using Textom Text Mining Techniques program and Ucinet Big Data analysis program. The research results are as follows: First, as a result of keyword analysis on 67.646 Z-generation fashion social media posts over the last 5 years, 220,211 keywords were extracted. Among them, 67 major keywords were selected based on the frequency of co-occurrence being greater than more than 250 times. As the top keywords appearing over 1000 times, were the most influential as the number of nodes connected to 'Z generation' (29595 times) are overwhelmingly, and was followed by 'millennials'(18536 times), 'fashion'(17836 times), and 'generation'(13055 times), 'brand'(8325 times) and 'trend'(7310 times) Second, as a result of the analysis of Network Degree Centrality between the key keywords for the Z-generation, the number of nodes connected to the "Z-generation" (29595 times) is overwhelmingly large. Next, many 'millennial'(18536 times), 'fashion'(17836 times), 'generation'(13055 times), 'brand'(8325 times), 'trend'(7310 times), etc. appear. These texts are considered to be important factors in exploring the reaction of social media to the Z-generation. Third, through the analysis of CONCOR, text with the structural equivalence between major keywords for Gen Z fashion was rearranged and clustered. In addition, four clusters were derived by grouping through network semantic network visualization. Group 1 is 54 texts, 'Diverse Characteristics of Z-Generation Fashion Consumers', Group 2 is 7 Texts, 'Z-Generation's teenagers Fashion Powers', Group 3 is 8 Texts, 'Z-Generation's Celebrity Fashions' Interest and Fashion', Group 4 named 'Gucci', the most popular luxury fashion of the Z-generation as one text.

텍스트네트워크분석을 활용한 국내·외 호스피스 간호 연구 주제의 비교 분석 (A Comparison of Hospice Care Research Topics between Korea and Other Countries Using Text Network Analysis)

  • 박은준;김영지;박찬숙
    • 대한간호학회지
    • /
    • 제47권5호
    • /
    • pp.600-612
    • /
    • 2017
  • Purpose: This study aimed to identify and compare hospice care research topics between Korean and international nursing studies using text network analysis. Methods: The study was conducted in four steps: 1) collecting abstracts of relevant journal articles, 2) extracting and cleaning keywords (semantic morphemes) from the abstracts, 3) developing co-occurrence matrices and text-networks of keywords, and 4) analyzing network-related measures including degree centrality, closeness centrality, betweenness centrality, and clustering using the NetMiner program. Abstracts from 347 Korean and 1,926 international studies for the period of 1998-2016 were analyzed. Results: Between Korean and international studies, six of the most important core keywords-"hospice," "patient," "death," "RNs," "care," and "family"-were common, whereas "cancer" from Korean studies and "palliative care" from international studies ranked more highly. Keywords such as "attitude," "spirituality," "life," "effect," and "meaning" for Korean studies and "communication," "treatment," "USA," and "doctor" for international studies uniquely emerged as core keywords in recent studies (2011~2016). Five subtopic groups each were identified from Korean and international studies. Two common subtopics were "hospice palliative care and volunteers" and "cancer patients." Conclusion: For a better quality of hospice care in Korea, it is recommended that nursing researchers focus on study topics of patients with non-cancer disease, children and family, communication, and pain and symptom management.

단어 동시출현관계로 구축한 계층적 그래프 모델을 활용한 자동 키워드 추출 방법 (Automatic Keyword Extraction using Hierarchical Graph Model Based on Word Co-occurrences)

  • 송광호;김유성
    • 정보과학회 논문지
    • /
    • 제44권5호
    • /
    • pp.522-536
    • /
    • 2017
  • 키워드 추출은 주어진 문서로부터 문서의 주제나 내용에 관련된 단어들을 추출해내는 방법으로 대량의 문서를 다루는 텍스트마이닝 연구들이 전처리에서 공통적으로 거치는 대표 자질 추출에서 중요하게 활용될 수 있다. 본 논문에서는 하나의 문서의 주제에 적합한 키워드를 추출하기 위해 문서에 출현한 단어들 사이의 동시출현관계, 동시출현 단어 쌍 사이의 출현 종속 관계, 단어들 사이의 공통 부분단어 관계 등의 다양한 관계들을 특징으로 활용하여 구축한 계층적 그래프 모델을 제안하고, 그래프를 구성하는 정점(Vertex)들의 중요도를 평가할 때 입력 간선(Edge)에 의한 영향뿐만 아니라 출력 간선에 의한 영향도 고려한 새로운 중요도 산출 방법을 제안하며, 이를 토대로 점진적으로 키워드를 추출해내는 방안을 제안한다. 그리고 제안한 방법의 정확성과 주제적 포괄성 검증을 위해 다양한 분야의 주제를 가진 문서 데이터에 다양한 평가방법을 적용해 기존의 방법보다 전체적으로 더 나은 성능을 보임을 확인하였다.