• Title/Summary/Keyword: Co-living

Search Result 521, Processing Time 0.025 seconds

Microbial production of coenzyme Q10

  • Suh, Jung-Woo
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2006.11a
    • /
    • pp.127-130
    • /
    • 2006
  • Coenzyme Q10(CoQ10) is a biological quinine compound that is widely found in living organisms including yeast, plants, and animals. CoQ10 has two major physiological activities:(a)mitochondrial electron-transport activity and (b )antioxidant activity. Various clinical applications are also available: Parkinson's disease, Heart disease, diabetes. Because of its various application filed, the market size of CoQ10 is continuously expanding all over the world. A Japanese company, Nisshin Pharma Inc. is the first industrial producer of CoQ10(1974). CoQ10 can be produced by fermentation and chemical synthesis. In several companies, these two methods are used for the production of CoQ10:chemical synthesis - Yungjin, Daewoong, Nishin Parma; fermentation - Kaneka, Kyowa, Yungjin, etc. Researchs in microbial production of CoQ10 have several steps: screening of producing microorganisms, strain development, fermentation process, purification process, scale-up process, plant production. Several strategies are available for the strain development : Random mutation and screening, directed metabolic engineering. For the optimization of fermentation process, various conditions (nutrient, aeration, temperature, culture type, etc.) are considered. Purification is one of the most important step because the quality of final products entirely depends on its purity. The production cost will be reduced and the quality of the CoQ10 will be impoved by continuous researches in strain development, fermentation process, purification process.

  • PDF

Microbial production of coenzyme Q10

  • Suh, Jung-Woo
    • 한국약용작물학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.127-130
    • /
    • 2006
  • Coenzyme Q10(CoQ10) is a biological quinine compound that is widely found in living organisms including yeast, plants, and animals. CoQ10 has two major physiological activities:(a)mitochondrial electron-transport activity and (b)antioxidant activity. Various clinical applications are also available : Parkinson's disease, Heart disease, diabetes. Because of its various application filed, the market size of CoQ 10 is continuously expanding all over the world. A Japanese company, Nisshin Pharma Inc. is the first industrial producer of CoQ10(1974). CoQ10 can be produced by fermentation and chemical synthesis. In several companies, these two methods are used for the production of CoQ10:chemical synthesis - Yungjin, Daewoong, Nishin Parma; fermentation - Kaneka, Kyowa, Yungjin, etc. Researchs in microbial production of CoQ10 have several steps: screening of producing microorganisms, strain development, fermentation process, purification process, scale-up process, plant production. Several strategies are available for the strain development : Random mutation and screening, directed metabolic engineering. For the optimization of fermentation process, various conditions (nutrient, aeration, temperature, culture type, etc.) are considered. Purification is one of the most important step because the quality of final products entirely depends on its purity. The production cost will be reduced and the quality of the CoQ10 will be impoved by continuous researches in strain development, fermentation process, purification process.

  • PDF

A View of China's Prospects, Obstacles, and Contradictions

  • Phillips, Fred
    • World Technopolis Review
    • /
    • v.8 no.1
    • /
    • pp.2-7
    • /
    • 2019
  • If China can emerge from its current recession and complete its ongoing transition to technology-leader status, it will be an ever more dominant force in Asia and worldwide. Years spent living in Asia have spurred the co-Editor-in-Chief of this journal to offer informal comments on the status and prospects of China's socio-technical situation.

DNA Barcoding for the Hydrothermal Vent Crab Austinograea Species (Crustacea: Bythograeidae) from the North Fiji Basin, Southwestern Pacific Ocean

  • Lee, Won-Kyung;Ju, Se-Jong;Hou, Bo Kyeng;Kim, Se-Joo
    • Animal Systematics, Evolution and Diversity
    • /
    • v.35 no.1
    • /
    • pp.30-32
    • /
    • 2019
  • The brachyuran crab Bythograeidae Williams, 1980 is common in hydrothermal vent fields worldwide and has recorded to sixteen species of six genera. In this study, we firstly determined the cytochrome c oxidase subunit 1 (CO1) DNA barcodes for the fifth species of Austinograea, A. hourdezi, from hydrothermal vent regions of the North Fiji Basin in southwestern Pacific Ocean. All CO1 DNA barcodes of A. hourdezi were identical. The interspecies variations of three bythograeid genera were 10.9-13.3% for Austinograea, 6.6-15.7% for Bythograea, and 9.7% for Gandalfus. These results would be helpful to understand taxonomy of brachyuran crabs living in hydrothermal vent fields using CO1 DNA barcodes.

Living Lab as User-Driven Innovation Model: Case Analysis and Applicability (사용자 주도형 혁신모델로서 리빙랩 사례 분석과 적용 가능성 탐색)

  • Seong, Jieun;Song, Wichin;Park, Inyong
    • Journal of Korea Technology Innovation Society
    • /
    • v.17 no.2
    • /
    • pp.309-333
    • /
    • 2014
  • To meet the challenge of new type of innovation activities requires us to understand the social context of innovation and the potential needs of innovation users and, based on this, to co-construct technology and society simultaneously. Effective 'demand articulation' activities such as the understanding and utilization of user experiences and socio-technical planning are prerequisites for carrying out post-catch up innovations shaping new trajectories and contributing to solving social problems. Living Lab has recently been emerging particularly in Europe as an 'user-driven innovation model', in which users are active participants in innovation activities. The purpose of this study is to contribute to a theoretical discussion of Living Lab as an user-driven innovation model, to make a brief review of cases of Living Lab and to explore Living Lab's applicability in the Korean context. Living Lab is an open innovation model, in which end suers actively participate in innovation processes in a particular geographical space or region and would be able to solve specific problems of that space or region. In that sense, Living Lab would be able to strengthen the problem-solving capabilities of local communities and to become a pioneer in inducing and realizing a new socio-technical system. Furthermore, Living Lab could become an innovative policy tool reflecting recent major changes in innovation policy paradigms such as post-catch up innovation, demand-oriented innovation, regional innovation, societal innovation, innovation eco-system and socio-technical system transition, and thus make a contribution to exploring a new way of bringing about changes in the Korean society.

Pb Biosorption by Saccharomyces cerevisiae (Saccharomyces cerevisiae에 의한 Pb 생체흡착)

  • 안갑환;서근학
    • KSBB Journal
    • /
    • v.11 no.2
    • /
    • pp.173-180
    • /
    • 1996
  • The contamination of the environment by heavy metals results in a serious public health problem due to the toxicity of those pollutants even at low concentrations. Microorganisms may be used to remediate wastewaters contamlialtd with heavy metals. The waste S. cerevisiae is an inexpensive readily available source of biomass for bioremediation of wastewater. S. cerevisiae was investigated for their ability to absorb Pb. The crushed biomass of S. cerevisiae exhibited higher Pb uptake capacity than the living S. cerevisiae and the sterilized S. cerevisiae. At the same metal concentration, metal uptake per unit concentration or adsorbent decreased when the biomass concentration rises. The order of the biosorption capacity of the living S. cerevisiae was Pb>Cu>Cd=Co>Cr. When S. cerevisiae was pretreated with 0.1 M NaOH, Pb uptake was increased by 150 percent and 0.1 M HC1, 0.1 M $H_2S_O4$ solutions were efficient in the desorption of Pb. The sorption equilibrium of Pb ions can be described by the Freundlich and Langmuir models.

  • PDF

Supplementary effect of the rice germ oil on blood glucose in Diabetic KK Mice (쌀눈기름의 급여가 KK 당뇨 마우스의 혈당 수준에 미치는 영향)

  • 이성현;박홍주;전혜경;이승교;이연숙
    • The Korean Journal of Community Living Science
    • /
    • v.14 no.3
    • /
    • pp.67-73
    • /
    • 2003
  • This study was carried out to investigate the supplementary effects of the rice germ oil compared with soy bean oil on blood glucose level of non-insulin dependent diabetic mice. Forty diabetic KK mice were fed two kinds of experimental diets with 20% lipid from soy bean oil as a control(CO) and rice germ oil(RG) for 8 weeks, respectively. Diet intake, body weight, organs weights and lipids levels of serum, liver and feces were measured. There was no significant difference in food and water intake, body weight gain and organs weights between experimental groups. The concentrations of fasting and random blood glucose were similar between CO and RG groups. There was no significant difference in blood glucose levels after glucose treatment during the glucose tolerance test between two groups. The levels of $HbA_{1c}$ as the index of blood glucose status, and insulin were similar in two groups. These results suggested that rice germ oil can't reduce blood glucose concentration of non-insulin dependent diabetic mice compared with soybean oil. But we need to investigate the hypoglycemic effect of rice germ oil by changing supplementary level and period.

  • PDF

A Conceptual Framework for Value Co-creation in an Innovation Ecosystem: The Case of Technology-based Collaboration Network

  • Han, Eunjung;Hong, Soon-Goo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.22 no.4
    • /
    • pp.29-43
    • /
    • 2017
  • Innovation Cosystems are Conceptualized as Organizational Networks of Economic Actors, Technologies and Social Contexts that Interact for Knowledge Production, use, and Adaptation. This Paper Proposed a Conceptual Framework to Describe Value Co-creation of Organizational Networks Engaged in Technology Innovation. We Adopted Theory-Based Approach by Integrating the Perspective of Service-Dominant (S-D) Logic Into the Evolutionary Model of the Triple Helix. The Framework Gives a Plausible Explanation on how Actors Collaborate to Create Value in Dynamic Contexts of an Innovation Ecosystem. The Innovation Ecosystem can be Considered as a Composite of Sub-Ecosystems, Including Knowledge, Sectoral, and Business Ecosystems. When these Sub-Ecosystems are Recursively Transformed by Coordination of Functional Mechanisms that Serve Value Co-creation in the Innovation Process, the Innovation Ecosystem will be Re-Organized and Evolve. The case of the Digital Living Network Alliance (DLNA) was Examined to Demonstrate the Fundamental Mechanisms for Value Co-creation that was Described in the Framework. The case Study Indicates Features of Value Co-creation when Implementing Innovation in Organizational Networks.

Anionic Synthesis of Dipyridine Chain End-Functionalized Polystyrene and Polybutadiene (리빙 음이온 중합에 의한 Dipyridine 말단 관능화 폴리스티렌 및 폴리부타디엔의 합성)

  • Ji, Sang-Chul;Lee, Jong-Seop;Kim, Doo-Hwan;Kang, Cheol-Han;Park, Jong-Hyuk;Lee, Bum-Jae
    • Polymer(Korea)
    • /
    • v.34 no.2
    • /
    • pp.159-165
    • /
    • 2010
  • Dipyridine-terminated polystyrenes and polybutadienes were synthesized by the chain endfunctionalization reaction of polystyryllithium (PSLi) and polybutadienyllithium (PBDLi) with di(2-pyridyl) ketone(DPK) using a living anionic polymerization method in the Ar-glove box. Living polymeric lithiums with low molecular weights (Mw=1000~2000 g/mol) were used to investigate the chain end-functionalization yield with DPK and the degree of coupling reaction by the attack of organolithium to the pyridine ring in the presence of TMEDA using GPC, $^1H$-NMR, $^{13}C$ analysis. DPK-terminated PBD exhibited much higher functionalization yield and less amount of coupling reaction compared with DPK-terminated PS. 86% functionalization yield with 9% degree of coupling was obtained when the PBDLi was added dropwise to DPK solution at room temperature. The functionalization yield was increased as the reaction temperature decreased, however, no LiCl effect was observed in this chain end-functionalization reaction with DPK.