• Title/Summary/Keyword: Co-extrusion Process

Search Result 61, Processing Time 0.023 seconds

Effects of extrusion of rice bran on performance and phosphorous bioavailability in broiler chickens

  • Zare-Sheibani, Ali Akbar;Arab, Masoud;Zamiri, Mohammad Javad;Rezvani, Mohammad Reza;Dadpasand, Mohammad;Ahmadi, Farhad
    • Journal of Animal Science and Technology
    • /
    • v.57 no.7
    • /
    • pp.26.1-26.5
    • /
    • 2015
  • Background: Rice bran is a by-product of the rice-milling process, which remains largely underutilized; however, efficient processing treatments may improve its feeding value for chickens. This is of great economic and environmental importance, as this can lower the production costs, and offer an opportunity for valorization of a low-quality agricultural by-product, to a high-value feed source. Methods: This experiment was conducted to study the effect of extruded rice bran on performance and phosphorous (P) bioavailability in broiler chickens. In a completely randomized design, 200 seven-day-old broilers (Cobb 500) were allotted to five treatments with five replicates per treatment and 8 chicks per replicate, and fed with their respective diet during the starter (8 to 21 days) and grower (22 to 42 days) periods. Diets were a basal corn-soybean based diet (T1), or diets containing 20 % rice bran (T2), 30 % rice bran (T3), 20 % extruded rice bran (T4), or 30 % extruded rice bran (T5). Results: Birds feeding on T4 and T5 diets had a higher body weight gain and lower feed-to-gain ratio compared to those feeding on T2 and T3 diets (p < 0.05). Birds receiving diets containing extruded rice bran had higher total P availability and tibia ash content, as compared with those receiving diets containing un-extruded rice bran (p < 0.05). Relative weight of the pancreas was higher in birds receiving T2 and T3 diets. Conclusions: The results confirmed the beneficial effect of extrusion treatment of rice bran on performance and P availability in broilers. Up to 30 % extruded rice bran may be included in the broiler diet without apparent adverse effects on the performance.

Effect of Forming Process and Particle Size on Properties of Porous Silicon Carbide Ceramic Candle Filters (성형공정(成形工程)과 원료입도(原料粒度)가 다공성(多孔性) 탄화규소(炭火硅素) 세라믹 캔들 필터 특성(特性)에 미치는 영향(影響))

  • Han, In-Sub;Seo, Doo-Won;Hong, Ki-Seog;Woo, Sang-Kuk
    • Resources Recycling
    • /
    • v.19 no.5
    • /
    • pp.31-43
    • /
    • 2010
  • To fabricate porous SiC candle filter for filtration facility of the IGCC system, the candle type filter preforms were fabricated by ramming and vacuum extrusion process. A commercially available ${\alpha}$-SiC powders with various particle size were used as starting raw materials, and $44\;{\mu}m$ mullite, $CaCO_3$ powder were used as non-clay based inorganic sintering additive. The candle typed preforms by ramming process and vacuum extrusion were sintered at $1400^{\circ}C$ for 2h in air atmosphere. The effect of forming method and particle size of filter matrix on porosity, density, strength (flexural and compressive strength) and microstructure of the sintered porous SiC candle tilters were investigated. The sintered porous SiC filters which were fabricated by ramming process have more higher density and strength than extruded filter in same particle size of the matrix, and its maximum density and 3-point bending strength were $2.00\;g/cm^3$ and 45 MPa, respectively. Also, corrosion test of the sintered candle filter specimens by different forming method was performed at $600^{\circ}C$ for 2400h using IGCC syngas atmosphere for estimation of long-term reliability of the candle filter matrix.

Numerical analysis of internal flow and mixing performance in polymer extruder II: twin screw element

  • Kim, Nak-Soo;Kim, Hong-Bum;Lee, Jae-Wook
    • Korea-Australia Rheology Journal
    • /
    • v.18 no.3
    • /
    • pp.153-160
    • /
    • 2006
  • We analyzed the non-Newtonian and non-isothermal flow with Carreau-Yasuda viscosity model in co-rotating and counter-rotating twin screw extruder systems. The mixing performances with respect to the screw speed, the screw pitch, and the rotating direction have been investigated. The dynamics of mixing was studied numerically by tracking the motions of particles. The extent of mixing was characterized in terms of the deformation rate, the residence time distribution, and the average strain. The results showed that the high screw speed decreases the residence time but increases the deformation rate. Small screw pitch increases the residence time. It is concluded that the high screw speed increases the dispersive mixing performance, while the small screw pitch increases the distributive mixing performance. Co-rotating screw extruder has the better conveying performance and the distributive mixing performance than counter-rotating screw extruder with the same screw speed and pitch. Co-rotating screw extruder developed faster transport velocity and it is advantageous the flow characteristics to the mixing that transfers polymer melt from one barrel to the other barrel.

Stability analysis of a three-layer film casting process

  • Lee, Joo-Sung;Shin, Dong-Myeong;Jung, Hyun-Wook;Hyun, Jae-Chun
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.1
    • /
    • pp.27-33
    • /
    • 2007
  • The co-extrusion of multi-layer films has been studied with the focus on its process stability. As in the single-layer film casting process, the productivity of the industrially important multi-layer film casting and the quality of thus produced films have often been hampered by various instabilities occurring in the process including draw resonance, a supercritical Hopfbifurcation instability, frequently encountered when the draw ratio is raised beyond a certain critical value. In this study, this draw resonance instability along with the neck-in of the film width has been investigated for a three-layer film casting using a varying width non-isothermal 1-D model of the system with Phan-Thien and Tanner (PTT) constitutive equation known for its robustness in portraying extensional deformation processes. The effects of various process conditions, e.g., the aspect ratio, the thickness ratio of the individual film layers, and cooling of the process, on the stability have been examined through the nonlinear stability analysis.

Characteristics of Anode-supported Flat Tubular Solid Oxide Fuel Cell (연료극 지지체식 평관형 고체산화물 연료전지 특성 연구)

  • Kim Jong-Hee;Song Rak-Hyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.7 no.2
    • /
    • pp.94-99
    • /
    • 2004
  • Anode-supported flat tubular solid oxide fuel cell (SOFC) was investigated to increase the cell power density. The anode-supported flat tube was fabricated by extrusion process. The porosity and pore size of Ni/YSZ ($8mol\%$ yttria-stabilized zirconia) cermet anode were $50.6\%\;and\;0.23{\mu}m$, respectively. The Ni particles in the anode were distributed uniformly and connected well to each other particles in the cermet anode. YSZ electrolyte layer and multilayered cathode composed of $LSM(La_{0.85}Sr_{0.15})_{0.9}MnO_3)/YSZ$ composite, LSM, and $LSCF(La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.7}O_3)$ were coated onto the anode substrate by slurry dip coating, subsequently. The anode-supported flat tubular cell showed a performance of $300mW/cm^2 (0.6V,\; 500 mA/cm^2)\;at\;500^{\circ}C$. The electrochemical characteristics of the flat tubular cell were examined by ac impedance method and the humidified fuel enhanced the cell performance. Areal specific resistance of the LSM-coated SUS430 by slurry dipping process as metallic interconnect was $148m{\Omega}cm^2\;at\;750^{\circ}C$ and then decreased to $148m{\Omega}cm^2$ after 450hr. On the other hand, the LSM-coated Fecralloy by slurry dipping process showed a high area specific resistance.

Study of Plastic Deformation of Steel Wire for Weight Reduction of Automotive Weather Strip (자동차 웨더스트립 심재 경량화를 위한 강선(Steel Wire)의 소성변형 연구)

  • Choi, Bosung;Lee, Dugyoung;Jin, Chankyu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.5
    • /
    • pp.82-86
    • /
    • 2013
  • The automotive weather strip has the functions isolating of dust, water, noise and vibration from outside. The core of weather strip is made of steel with stiffness. By using the wire formed as the core of weather strip, weight can be reduced as much as 35% by comparing with existing steel core. For this reason, forming wire is necessary to keep the zigzag shape as it is. The deformation which is occurred during forming process can be predicted and it can be used in case of manufacturing dies through CAE. In this paper, rolling process conditions are deduced and the springback amount is predicted after rolling process by using the simulation. The springback amount of product is measured by using optical microscope, and measurement result is compared with the simulation result of springback as the same condition. The suitable gap between dies to compensate springback after rolling process is predicted through simulation and it is used for manufacturing dies.

Effects of Die Temperature and CO2 Injection on Physical Properties and Antioxidant Activity of Extruded Rice with Tomato Flour (사출구 온도와 CO2 주입이 쌀·토마토 압출성형물의 물리적 특성 및 항산화 활성에 미치는 영향)

  • An, Sang-Hee;Ryu, Gi-Hyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.6
    • /
    • pp.912-920
    • /
    • 2015
  • The study was designed to investigate the effects of die temperature and $CO_2$ injection on the physical and antioxidant properties of extruded rice with tomato flour. Moisture content and screw speed were fixed at 25% and 150 rpm, respectively. Die temperatures and $CO_2$ injection were adjusted to 80, 110, and $140^{\circ}C$ and 0, and 300 mL/min, respectively. Specific mechanical energy input decreased as die temperature increased from 80 to $140^{\circ}C$. The expansion index increased, while bulk density decreased with $CO_2$ injection. All extrudates showed increased water soluble index (WSI) and water absorption index through the extrusion process. WSI increased as die temperature increased. 1,1-Diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity and total phenolic compounds increased as die temperature increased from 80 to $140^{\circ}C$. Total carotenoid and lycopene contents decreased through the extrusion process. Total carotenoid and lycopene contents upon 0 mL/min $CO_2$ injection and $140^{\circ}C$ die temperature were highest at $6.65{\mu}g/g$ and 2.69 mg/kg, respectively. In conclusion, $CO_2$ injection affects expansion properties while an increased die temperature leads to increased DPPH radical scavenging activity and total phenols.

Fabrication and Characteristics of Anode-supported Tubular Solid Oxide Fuel Cell (연료극 지지체식 원통형 고체산화물 연료전지의 제조 및 특성)

  • Song, Keun-Sik;Song, Rak-Hyun;Ihm, Young-Eon
    • Korean Journal of Materials Research
    • /
    • v.12 no.9
    • /
    • pp.691-695
    • /
    • 2002
  • A low temperature anode-supported tubular solid oxide fuel cell was developed. The anode-supported tube was fabricated using extrusion process. Then the electrolyte layer and the cathode layer were coated onto the anode tube by slurry dipping process, subsequently. The anode tube and electrolyte were co-fired at $140^{\circ}C$, and the cathode was sintered at $1200^{\circ}C$. The thickness and gas permeability of the electrolyte depended on the number of coating and the slurry concentration. Anode-supported tube was satisfied with SOFC requirements, related to electrical conductivity, pore structure, and gas diffusion limitations. At operating temperature of $800^{\circ}C$, open circuit voltage of the cell with gastight and dense electrolyte layer was 1.1 V and the cell showed a good performance of 450 mW/$\textrm{cm}^2$.

Performance Characteristics of Anode-Supported Tubular Solid Oxide Fuel Cell (연료극 지지체식 원통형 고체산화물 연료전지의 성능 특성)

  • Song Rak-Hyun;Song Keun-Suk
    • Korean Journal of Materials Research
    • /
    • v.14 no.5
    • /
    • pp.368-373
    • /
    • 2004
  • To improve the conventional cathode-supported tubular solid oxide fuel cell (SOFC) from the viewpoint of low cell power density, expensive fabrication process and high operation temperature, the anode-supported tubular solid oxide fuel cell was investigated. The anode tube of Ni-8mol% $Y_2$O$_3$-stabilized $ZrO_2$ (8YSZ) was manufactured by extrusion process, and, the electrolyte of 8YSZ and the multi-layered cathode of $LaSrMnO_3$(LSM)ILSM-YSZ composite/$LaSrCoFeO_3$ were coated on the surface of the anode tube by slurry dip coating process, subsequently. Their cell performances were examined under gases of humidified hydrogen with 3% water and air. In the thermal cycle condition of heating and cooling rates with $3.33^{\circ}C$/min, the anode-supported tubular cell showed an excellent resistance as compared with the electrolyte-supported planar cell. The optimum hydrogen flow rate was evaluated and the air preheating increased the cell performance due to the increased gas temperature inside the cell. In long-term stability test, the single cell indicated a stable performance of 300 mA/$\textrm{cm}^2$ at 0.85 V for 255 hr.

Preparation and Characterization of Grafted Maleic Anhydride onto Polypropylene by Reactive Extrusion (반응 압출을 통한 PP-g-MA 제조 및 특성평가)

  • Kang, Dong-Jin;Lee, Sung-Hyo;Pal, Kaushik;Park, Chan-Young;Zhang, Zhen Xiu;Bang, Dae-Suk;Kim, Jin-Kuk
    • Polymer(Korea)
    • /
    • v.33 no.4
    • /
    • pp.358-363
    • /
    • 2009
  • Maleic anhydride-grafted polypropylene has been widely used to improve the interfacial interaction between the components in PP/polar polymer blends and PP/filler composites and to maximize the physical properties and thermal properties. In this paper. the maleic anhydride (MAH)-grafted polypropylene (co-PP) was fabricated through reactive extrusion process with di-cumyl peroxide (DCP) as an initiator. The grafting degree of MAH depending on the contents of DCP and MAH was investigated by FT-IR spectra and chemical titration. The grafting degree increased with increasing MAH concentration and also showed maximum value at 0.06 wt% of DCP concentration. Melt flow index (MFI) of the grafted copolymer was increased with increasing the contents of MAH. The DSC and TGA analysis data indicate the melting temperature and thermal degradation of PP depending on the grafting degree of MAH.