• Title/Summary/Keyword: Co-exposure

Search Result 979, Processing Time 0.024 seconds

Characteristics of flow field of nose-only exposure chamber for inhalation toxicity evaluation (흡입독성평가를 위한 비부노출 챔버의 유동흐름 특성)

  • Noh, Hakjae;Bong, Choonkeun;Bong, Hakyung;Kim, Yonggu;Cho, Myunghaing;Kim, Sanghwa;Kim, Daesung
    • Particle and aerosol research
    • /
    • v.12 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • In this work, we evaluated the characteristics of flow field and uniformity of the nose-only exposure chambers for the inhalation toxicity test. Computational fluid dynamics (CFD) modeling was carried out to demonstrate uniformity of the nose-only exposure chambers. Because it is very important in the inhalation toxicity experiments that test materials are distributed uniformly to each holder of the chamber. The test was done with these 3 types of chamber with different form to develop inhalation toxicity evaluation system, easy-to-operate system among exposure chamber used for evaluating inhalation toxicity of environmental chemical mixtures. Through CFD interpretation, nose-only exposure chamber was made with the selection of the optimal conditions. For its evaluation, one type of fragrance was selected and measured particle size distribution of each port. The gene becoming luminous to green fluorescence was combined with GPT-SPE, a type of tGFP vector, to be inhaled to the mouse. Based on this, luminous intensity was checked. As a result, total particle number concentration of each port had average value of $3.17{\times}10^6{\sharp}/cm^3$ and range of the highest and lowest concentration value was approximately ${\pm}4.8%$. Autopsy of lung tissues of mouse showed that it had clearly better delivery of gene compared to the control group.

The Risk Factors of Acute Cardiovascular and Neurological Toxicity in Acute CO Poisoning Patients and Epidemiologic Features of Exposure Routes (급성 일산화탄소 중독 환자에서 급성 심혈관계, 신경학적 독성의 위험요인과 노출 경로의 역학적 특성)

  • Park, Jinsoo;Shin, Seunglyul;Seo, Youngho;Jung, Hyunmin
    • Journal of The Korean Society of Clinical Toxicology
    • /
    • v.18 no.1
    • /
    • pp.34-41
    • /
    • 2020
  • Purpose: This study evaluated aggressive hyperbaric oxygen therapy (HBOT) by understanding various exposure routes of acute carbon monoxide (CO) poisoning, the risk factors causing acute cardiovascular, and neurological toxicity caused by poisoning. Methods: A retrospective study was conducted based on the medical records of 417 acute CO poisoning patients who visited the emergency care unit from March 2017 to August 2019. The exposure routes, HBOT performance, age, sex, medical history (hypertension, diabetes mellitus, ischemic heart disease, heart failure), intentionality, loss of consciousness (LOC), intake with alcohol or sedatives, and initial test results (carboxyhemoglobin (COHb), troponin-I, electrocardiography, echocardiography, brain MRI) were examined. Comparative analysis of the clinical information was conducted between the groups that showed acute cardiovascular toxicity and neurological toxicity, and groups that did not. Results: Among 417 patients diagnosed with acute CO poisoning, 201 cases (48.2%) were intentional, and charcoal briquette was the most common route (169 patients (40.5%)). Two hundred sixteen cases (51.8%) were accidental, and fire was the most common route (135 patients (32.4%)). The exposure route was more diverse with accidental poisoning. Three hundred ninety-nine patients were studied for acute cardiovascular toxicity, and 62 patients (15.5%) were confirmed to be positive. The result was statistically significant in intentionality, LOC, combined sedatives, initial COHb, HTN, and IHD. One hundred two patients were studied for acute neurological toxicity, which was observed in 26 patients (25.5%). The result was statistically significant in age and LOC. Conclusion: Active HBOT should be performed to minimize damage to the major organs by identifying the various exposure routes of CO poisoning, risk factors for acute cardiovascular toxicity (intentionality, LOC, combined sedatives, initial COHb, HTN, IHD), and the risk factors for acute neurological toxicity (age, LOC).

Development of Automatic Remote Exposure Controller for Gamma Radiography (감마선투과검사 장치의 자동 원격조작기 개발)

  • Joo, Gwang-Tae;Shin, Jin-Seong;Kim, Dong-Eun;Song, Jung-Ho;Choo, Seung-Hwan;Chang, Hong-Keun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.5
    • /
    • pp.490-499
    • /
    • 2002
  • Recently, gamma radiographic equipments have been used about 1,000 sets manually and operated by about 2,500 persons in Korea. In order for a radiography to work effectively with avoiding any hazard of the high level radiation from the source, many field workers have expected developing a wireless automatic remote exposure controller. The KlTCO research team has developed an automatic remote exposure controller that can regulate the speed of $0.4{\sim}1.2m/s$ by BLDC motor of 24V 200W which has output of $54kgf{\cdot}cm$, suitable torque and safety factor for the work. And the developed automatic remote exposure controller can control rpm of motor, pigtail position by photo-sensor and exposure time by timer to RF sensor. Thus, the developed equipment is expected that the unit can be used in many practical applications with benefits in economical advantage to combine the use of both automatic and manual type because attachment is possible existent manual remote exposure controller, AC and DC combined use.

Determination of Exposure Dose Rate and Isotropic Distributions of Substitute High Dose Rate Ir-192 Source for Co-60 Brachytherapy Source (원격강내조사용 Co-60 선원의 대체용 Ir-192 선원의 조사선량결정 및 선량 등방성조사)

  • 최태진;원철호;김옥배;김시운;김금배;조운갑;한현수;박경배
    • Progress in Medical Physics
    • /
    • v.9 no.1
    • /
    • pp.55-64
    • /
    • 1998
  • In recent, the demand of development of the high dose rate brachytherapy source increased for substitute for Co-60 source by iridium source, since the supplying Co-60 source is very depressed and the high dose rate brachytherapy sources are entirely imported from the abroad. This study investigated the exposure rates and isotropic dose distributions for the Ir-192 source produced from $\^$191/Ir(n,r)$\^$192/Ir by nuclear reactor in Korea Atomic Energy Research Institute. The activity of source was obtained an 1.012 Ci (the initial activity without encapsulation was 2,87Ci) by measurement with encapsuled stainless steel. The exposure rate of provided Ir-192 source was determined on 6.36 ${\pm}$ 0.147 Rm$^2$/h-GBq (2.350 ${\pm}$ 0.054 Rcm$^2$/mCi-hr) within ${\pm}$ 2.2% discrepancy with IC-10 ion chamber (0.14 cc) which was mounted on the acrylic jig to 5, 10 and 20 cm from the center of source. The calculated doses with 22 most significant spectrum lines were corrected with intrinsic efficiency of the germanium detector were compared to measured exposure dose rates within ${\pm}$3.8 % discrepancy. The authors confirmed the high dose rate Ir-192 source could be replaced the long decayed Co-60 source via investigation of the isotropic dose distributions in lateral, source axis and diagonal direction of source center are very closed to within 3% uncertainties. Especially, this exposure rate constant and isotropic dose distribution will be fundamental to build the high dose rate source and develop the computed therapy planning system.

  • PDF

Hazard Levels of Cooking Fumes in Republic of Korea Schools

  • Lee, Iu-Jin;Lee, Sang-Gil;Choi, Bo-Hwa;Seo, Hoe-Kyeong;Choi, Ji-Hyung
    • Safety and Health at Work
    • /
    • v.13 no.2
    • /
    • pp.227-234
    • /
    • 2022
  • Background and Purpose: In 2021, lung cancer in school food workers was first recognized as an occupational cancer. The classification of the carcinogenicity of cooking fumes by International Agency for Research on Cancer (IARC) was based on Chinese epidemiological data. This study aimed to determine the hazard levels of school cooking fumes in Korea. Materials and Methods: Based on public school cafeterias in one area, 25 locations were selected for the survey according to the number per school type, ventilation states, and environmental pre-assessments of cafeterias. Two inside cooking areas using a heat source and one outside cooking area were selected as control measurement points. Measurements of CO, CO2, polycyclic aromatic hydrocarbons (PAHs), and total volatile organic compounds (TVOCs), including benzene, formaldehyde, and particulate matter (PM10, PM2.5, PM1, respectively), were taken. The concentrations and patterns of each substance in the kitchens were compared with the outdoor air quality. Result: Known carcinogens, such as the concentrations of PAHs, formaldehyde, TVOC (benzene), and particulate matter in school cooking fumes, were all detected at similar or slightly higher levels than those found outside. Additionally, substances were detected at relatively low concentrations compared to the Chinese cooking fumes reported in the literature. However, the short-term exposure to high concentrations of CO (or composite exposure with CO2) and PM2.5 in this study were shown. Conclusion: The school cooking fumes in South Korea was a relatively less harmful than Chinese cooking fumes, however short-term, high exposure of toxic substances can cause a critical health effect.

Potential Work-related Exposure to SARS-CoV-2 by Standard Occupational Grouping Based on Pre-lockdown Working Conditions in France

  • Narges Ghoroubi;Emilie Counil;Myriam Khlat
    • Safety and Health at Work
    • /
    • v.14 no.4
    • /
    • pp.488-491
    • /
    • 2023
  • This study aims to ascertain occupations potentially at greatest risk of exposure to SARS-CoV-2 based on pre-lockdown working conditions in France. We combined two French population-based surveys documenting workplace exposures to infectious agents, face-to-face contact with the public, and working with colleagues just before the pandemic. Then, for each 87-level standard French occupational grouping, we estimated the number and percentage of the French working population reporting these occupational exposure factors, by gender, using survey weights. As much as 40% (11 million) of all workers reported at least two exposure factors. Most of the workers concerned were in the healthcare sector. However, army/police officers, firefighters, hairdressers, teachers, cultural/sports professionals, and some manual workers were also exposed. Women were overrepresented in certain occupations with potentially higher risks of exposure such as home caregivers, childminders, and hairdressers. Our gender-stratified matrix can be used to assign prelockdown work-related exposures to cohorts implemented during the pandemic.

Preliminary Study of the Effects of CO2 on the Survival and Gowth of Olive Flounder (Paralichthys olivaceus) Juveniles

  • Hwang, In-Joon;Park, Mun-Chang;Baek, Hea-Ja
    • Fisheries and Aquatic Sciences
    • /
    • v.12 no.4
    • /
    • pp.350-353
    • /
    • 2009
  • As a result of human industrial development, carbon dioxide ($CO_2$) is currently accumulating in the atmosphere and dissolving into the oceans. Sequestration into the deep sea has been proposed as a possible solution to this increasing atmospheric $CO_2$, although the impact of such a program on marine ecosystems is unknown. We examined the effects of increased $CO_2$ levels on the growth of the olive flounder, Paralichthys olivaceus. Juvenile olive flounder 40 days post hatching were exposed to two levels of $CO_2$ (3.60-7.55 and 4.05-11.46 kPa) in running seawater for 26 days. During the exposure period, the pH and $CO_2$ levels of the water were measured, and the numbers of dead individuals were counted in each aquarium. Following the exposure period, the total lengths (mm) and body weights (mg) of the juvenile fish were measured. Both $CO_2$ treatments significantly increased fish mortality compared to controls ($19.87\pm4.53%$ vs. 7.14% and $75.96\pm1.36%$ vs. 7.14% for high and low doses, respectively). After the high $CO_2$ treatment, total length ($14.98\pm6.58$ mm vs. $19.52\pm1.83$ mm) and body weight ($28.92\pm13.85$ mg vs. $67.35\pm18.32$ mg) of the exposed flounder were reduced compared to the control fish; however, no significant differences in these values were observed after the low $CO_2$ dose. These results suggested that $CO_2$ exposure inhibits growth in the juvenile stage and that $CO_2$-enriched seawater is toxic in the early life stages of olive flounder.

Predicting of the $^{14}C$ Activity in Rice Plants Exposed to $^{14}CO_2$ Gas for a Short Period of Time ($^{14}CO_2$가스에 단기간 노출된 벼의 $^{14}C$ 오염 예측)

  • Jun, In;Lim, Kwang-Muk;Keum, Dong-Kwon;Choi, Young-Ho;Han, Moon-Hee
    • Journal of Radiation Protection and Research
    • /
    • v.33 no.4
    • /
    • pp.135-141
    • /
    • 2008
  • This paper describes a dynamic compartment model to predict the time-dependent $^{14}C$ activity in a plant as a result of a direct exposure to an amount of $^{14}CO_2$ for a short period of time, and experimental results for the model validation. In the model, the plant consists of two compartments of the body and ears, and five carbon fluxes between the compartments, which are the function of parameters relating to the growth and photosynthesis of a plant, are considered. Model predictions were made for an investigation into the effects of the exposure time, the elapsed exposure time, and the model parameters on the $^{14}C$ radioactivity of a plant. The present model converged to a region where the specific activity model is applicable when the elapsed time of the exposure was extended up to the harvest time of a plant. The $^{14}C$ activity of a plant was predicted to be the greatest when the exposure had happened in the period between the flowering and ears-maturity on account of the most vigorous photosynthesis rate for the period. Comparison of model predictions with the observed 14C radioactivity of rice plants showed that the present model could predict the $^{14}C$ radioactivity of the rice plants reasonably well.

Derivation of preliminary derived concentration guideline level (DCGL) by reuse scenario for Kori Unit 1 using RESRAD-BUILD

  • Park, Sang June;Byon, Jihyang;Ban, Doo Hyun;Lee, Suhee;Sohn, Wook;Ahn, Seokyoung
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1231-1242
    • /
    • 2020
  • The Kori Unit 1 will be decommissioned after a permanent shutdown in June 2017. South Korea has a 0.1 mSv/yr exposure limit standard for limited or unlimited site release. This is South Korea's first commercial NPP; therefore, if the containment building is reused as a memorial hall, it will contribute to the improvement of public understanding and enhance the public's acceptance of NPPs. Also, existing Kori Unit 1 nuclear power plant manpower resources can be reused after decommissioning and resident staff and memorial hall visitors can activate nearby commercial areas. Therefore, such a reuse scenario may also prevent an economic recession. The exposure dose was calculated using the following scenarios: worker in the containment building, visitor in the containment building, and worker in buildings other than the containment building. The exposure dose in the buildings was calculated by the RESRAD-BUILD developed by the Argonne National Laboratory (ANL). The preliminary exposure dose and derived concentration guideline level (DCGL) were derived.