• Title/Summary/Keyword: Co-cured adhesive

Search Result 24, Processing Time 0.019 seconds

An Evaluation of Shear Bond Strength of New Dentin Bonding Agents (최근 소개된 상아질 접착제의 전단 접착 강도 비교)

  • Shin, Jisun;Hwang, Eunji;Kim, Jongbin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.44 no.3
    • /
    • pp.358-364
    • /
    • 2017
  • For the purpose of convenience and reducing time, newer bonding agents have been developed for composite resin restoration. Recently developed one bottle bonding system including etching, primer and adhesive can make procedures simpler and less technique-sensitive than old generation adhesives. The aim of this study was comparing the shear bond strength of new dentin bonding agents to the 5th generation bonding agent which had an etching step. 78 premolar teeth were randomly divided into three groups which were treated with $Tetric^{(R)}$ N-Bond Universal (Ivoclar Vivadent, Liechtenstein), $GC^{(R)}$ G-Premio BOND (GC Co., Japan) without additional etching step and $3M^{TM}$ Single Bond2 (3M ESPE, USA) with an etching step following manufacturer's instructions. $Filtek^{TM}$ Z-350 (3M ESPE, USA) composite resin was applied and light cured over bonding agents. For shear bond strength evaluation, universal testing machine was used with a wedge technique. As a result, shear bond strength of one step bonding agents was lower than two step bonding agent and there were statistically significant differences between them (p < 0.05). In addition, within the result of two new bonding agents, $Tetric^{(R)}$ N-Bond Universal showed significantly higher shear bond strength than $GC^{(R)}$ G-Premio BOND (p < 0.05).

EFFECT OF LIGHT IRRADIATION MODES ON THE MARGINAL LEAKAGE OF COMPOSITE RESIN RESTORATION (광조사 방식이 복합레진 수복물의 변연누출에 미치는 영향)

  • 박은숙;김기옥;김성교
    • Restorative Dentistry and Endodontics
    • /
    • v.26 no.4
    • /
    • pp.263-272
    • /
    • 2001
  • The aim of this study was to investigate the influence of four different light curing modes on the marginal leakage of Class V composite resin restoration. Eighty extracted human premolars were used. Wedge-shaped class Y cavities were prepared on the buccal surface of the tooth with high-speed diamond bur without bevel. The cavities were positioned half of the cavity above and half beyond the cemento-enamel junction. The depth, height, and width of the cavity were 2 mm, 3 mm and 2 mm respectively. The specimens were divided into 4 groups of 20 teeth each. All the specimen cavities were treated with Prime & Bond$^{R}$ NT dental adhesive system (Dentsply DeTrey GmbH, Germany) according to the manufacturer's instructions and cured for 10 seconds except group VI which were cured for 3 seconds. All the cavities were restored with resin composite Spectrum$^{TM}$ TPH A2 (Dentsply DeTrey GmbH, Germany) in a bulk. Resin composites were light-cured under 4 different modes. A regular intensity group (600 mW/${cm}^2$, group I) was irradiated for 30 s, a low intensity group (300 mW/${cm}^2$, group II) for 60 s and a ultra-high intensity group (1930 mW/${cm}^2$, group IV) for 3 s. A pulse-delay group (group III) was irradiated with 400 mW/${cm}^2$ for 2 s followed by 800 mW/${cm}^2$ for 10 s after 5 minutes delay. The Spectrum$^{TM}$ 800 (Dentsply DeTrey GmbH, Germany) light-curing units were used for groups I, II and III and Apollo 95E (DMD, U.S.A.) was used for group IV. The composite resin specimens were finished and polished immediately after light curing except group III which were finished and polished during delaying time. Specimens were stored in a physiologic saline solution at 37$^{\circ}C$ for 24 hours. After thermocycling (500$\times$, 5-55$^{\circ}C$), all teeth were covered with nail varnish up to 0.5 mm from the margins of the restorations, immersed in 37$^{\circ}C$, 2% methylene blue solution for 24 hours, and rinsed with tap water for 24 hours. After embedding in clear resin, the specimens were sectioned with a water-cooled diamond saw (Isomet$^{TM}$, Buehler Co., Lake Bluff, IL, U.S.A.) along the longitudinal axis of the tooth so as to pass the center of the restorations. The cut surfaces were examined under a stereomicroscope (SZ-PT Olympus, Japan) at ${\times}$25 magnification, and the images were captured with a CCD camera (GP-KR222, Panasonic, Japan) and stored in a computer with Studio Grabber program. Dye penetration depth at the restoration/dentin and the restoration/enamel interfaces was measured as a rate of the entire depth of the restoration using a software (Scion image, Scion Corp., U.S.A.) The data were analysed statistically using One-way ANOVA and Tukey's method. The results were as follows : 1. Pulse-Delay group did not show any significant difference in dye penetration rate from other groups at enamel and dentin margins (p>0.05) 2. At dentin margin, ultra-high intensity group showed significantly higher dye penetration rate than both regular intensity group and low intensity group (p<0.05). 3. At enamel margin, there were no statistically significant difference among four groups (p>0.05). 4. Dentin margin showed significantly higher dye penetration rate than enamel margin in all groups (p<0.05).

  • PDF

A SCANNING ELECTRON MICROSCOPIC STUDY ON THE MARGINAL ADAPTIBILITY IN APPLYING THE CAVITY VARNISH AND DENTIN BONDING AGENT IN AMALGAM RESTORATIONS (아말감 수복시(修復時) Cavity varnish와 Bonding agent 도포(塗布)에 따른 접합성(接合性)에 관(關)한 주사전자현미경적(走査電子顯微鏡的) 연구(硏究))

  • Kim, Seok-Hoon;Cho, Young-Gon
    • Restorative Dentistry and Endodontics
    • /
    • v.15 no.1
    • /
    • pp.107-119
    • /
    • 1990
  • The purpose of this study was to evaluate the marginal adaptability of the amalgam restorations in applying the cavity varnish (Copalite$^{(R)}$) and dentin bonding agent (Scotchbond 2$^{(R)}$) under the scanning electron microscope. For this study, eighteen sound extracted human molars were selected. Class I cavities in 12 teeth and class V cavities in 6 teeth were prepared using an air turbine with No. 701 tungsten carbide bur and finished using a low speed handpiece with No. 557 fissure bur. The prepared specimens were then divided into three groups including 4 class I cavities and 2 class V cavities in each group and restored as follows ; Group I. All the prepared cavities were restored with amalgam only (Control). Group II. Two layers of Copalite$^{(R)}$ cavity varnish were applied to the cavities with a gentle stream of air after each application and cavities were restored with amalgam. Group III. The enamel cavity margins were etched with 37% phosphoric acid gel for 60 sec., rinsed for 30 sec. and dried. One layer of visible lightcured Scotchbond Dental Adhesive$^{(R)}$ was applied and immediately cured for 20 seconds with visible light-cure unit and cavities were restored with amalgam. All the specimens were cut at the neck of the teeth and the occlusal halves of specimens were sectioned buccolingually in the longitudinal axis centering the amalgam restorations, using the disk. The cut specimens were ground with sandpapers (400, 600, 800, 1000 grit), and cleaned for 5 minutes in the ultrasonic cleaner (Brason Co. U.S.A.). In the cut surfaces, the amalgam - tooth interfaces were examined under the scanning electron microscope (JSM, 35C type, JEOL). The obtained results were as follows ; 1. The amalgam-tooth interfaces were reduced more significantly in the Copalite$^{(R)}$ and Scotchbond 2$^{(R)}$ application group than in the control group. 2. In the class I cavities, the Scotchbond 2$^{(R)}$ application group showed the findings similar to the Copalite$^{(R)}$ application group in the cavity floor, and the marginal adaptability was better in the side wall than in the cavity floor. 3. In the class I cavities, the Scotchbond 2$^{(R)}$ application group showed better marginal adaptability in the occlusal margin than in the gingival margin. 4. The marginal adaptability was in the order of the Scothbond 2$^{(R)}$ application group, the Copalite$^{(R)}$ application group and the control group.

  • PDF

Comparison of bracket bond strength in various directions of force (교정용 브라켓에 가해지는 힘의 방향에 따른 결합강도의 비교)

  • Lee, Hyun-Jung;Lee, Hyung-Soon;Jeon, Young-Mi;Kim, Jong-Ghee
    • The korean journal of orthodontics
    • /
    • v.33 no.5 s.100
    • /
    • pp.359-370
    • /
    • 2003
  • The purpose of this study was to evaluate the bond strength of orthodontic brackets bonded to metal bar with chemically cured adhesive (Ortho-one, Bisco Co, USA) in various types and directions of force application. Three types of metal bracket with different bracket base configurations; Micro-Loc base(Tomy Co, Japan), Chessboard base(Daesung Co, Korea), Non-etched Foil-Mesh base(Dentaurum, Germany); were used in this study. Peel, shear, tensile bond strengths were measured by universal testing machine and compared each other. The peel force directions applied were $0^{\circ},\;15^{\circ},\;30^{\circ},\;45^{\circ},\;60^{\circ},\;75^{\circ},\;90^{\circ}$ And then, in consideration of the different surface area of the bracket bases, the bond strength Per unit area were calculated and compared. The results obtained were summarized as follows: 1. The bond strengths according to the types and the directions of the forces were greatest at the shear forces in all three bracket base configuration groups(p<0.01). 2. As the peel force direction grew higher in degree, peel bond strength decreased. The Patterns of peel bond strength change according to force direction was similar in all three bracket base configurations. The minimum bond strength was 60 degree-peel bond strengths in all three bracket base configurations. 3. In Micro-Loc base group, minimum peel bond strength$(_{60}PBS)$ was in $29\%$ level of shear bond strength and $52\%$ level of tensile bond strength. In Chessboard base group, $_{60}PBS$ was in $34\%$ level of shear bond strength and $61\%$ level of tensile bond strength. In Non-etched Foil-Mesh base group, $_{60}PBS$ was in $34\%$ level of shear bond strength and $55\%$ level of tensile bond strength. 4. The bond strengths per unit area were lowest in Non-etched Foil-Mesh base group and highest in Chessboard base group(p<0.05). However, there were no differences in shear bond strength, tensile bond strength, $75^{\circ}\;and\;90^{\circ}$ per unit area between Micro-Loc and Chessboard base groups.