• Title/Summary/Keyword: Co-Injection

Search Result 1,393, Processing Time 0.027 seconds

The Stability Assessment of an Aquifer in Pohang Yeongil Bay due to CO2 Injection (이산화탄소 주입에 따른 포항 영일만 대수층 안정성평가)

  • Kim, Nam-Hoon;Jung, Hyung-Sik;Kim, Gvan-Dek;Jeong, Hoonyoung;Shin, Hyundon;Kwon, Yi-Kyun;Choe, Jonggeun
    • The Journal of Engineering Geology
    • /
    • v.28 no.2
    • /
    • pp.183-192
    • /
    • 2018
  • It is imperative to inject carbon dioxide($CO_2$) into an aquifer for alleviating the emission of $CO_2$. However, faults in the aquifer can be reactivated due to pressure increasement. Analyses of pressure change of the aquifer is necessary to prevent the fault reactivation. In this research, we assess the stability of an aquifer in Pohang Yeongil bay by investigating the pressure variation of faults EF1 and EF2. Two scenarios, which repeat $CO_2$ injection and suspension during two years, are simulated. Each scenario includes cases of injection rates of 20, 40, and 100 tons/day. In addition, we analyze planned and predicted injection rates for each case. In case of 20 tons/day, the maximum pressure of faults is 65% of the reactivation pressure. Even if daily injection rates are increased to 40 and 100 tons/day, the maximum pressures are 71% and 80% of the reactivation pressures, respectively. For 20 and 40 tons/day cases, planned injection rates almost accord with predicted injection rates during whole simulation period. On the other hand, predicted injection rates are smaller than planned injection rates for the 100 tons/day case due to bottom-hole pressure limit of the injection well.

A Study on the Variable Condition Debinding Process in Supercritical CO2 for Removing Binder from Thick Ceramic Injection Molded Parts (두꺼운 세라믹 사출성형체로부터 효율적인 결합제 제거를 위한 초임계 CO2 가변조건 탈지공정 연구)

  • Kim, Hyung-Kun;Yim, Joon-Hyuk;Kim, Hyung-Soo;Lim, Jong-Sung
    • Clean Technology
    • /
    • v.18 no.2
    • /
    • pp.155-161
    • /
    • 2012
  • The purpose of this study is to remove paraffin wax binder effectively from powder injection molded part using supercritical fluids in powder injection molding process. For a thin powder injection molded part about 1-2 mm thickness, paraffin wax binder can be removed rapidly without any defect by traditional supercritical extraction process which has fixed high temperature and pressure condition. But, for a thick powder injection molded part, there are limitations in removing paraffin wax binder by the fixed high process condition because crack occurs at the beginning step. Therefore, here we studied variable condition debinding process that starts with mild process condition at the beginning step and then increase the process conditions simultaneously at each step. To find out the initial process condition that has the highest extraction yield without any defect for each sample thickness, we investigated various supercritical debinding conditions using 1-4 mm thickness ceramic injection molded sample. By using the variable condition debinding process that starts with the initial process condition at the first step and then increasing process conditions simultaneously at each step (temperature from 333.15 to 343.15 K, pressure from 12 to 27 MPa, and $CO_2$ flow rate from 1.5 to 10 L/min), over 95% of paraffin wax binder was removed from the 4 mm thick (10 mm diameter) ceramic injection molded disk samples within 5 hours.

Process optimization for the steam injection molding (스팀사출성형에 의한 공정의 최적화)

  • Moon, Yonng-dae
    • Design & Manufacturing
    • /
    • v.9 no.2
    • /
    • pp.10-15
    • /
    • 2015
  • The water has been the suitable for the cooling medium until now. But the water as cooling medium seem to have the limit for high speed injection. The steam plastic molding injection use the steam as the medium when raise the mold temperature. The weld line has been the major quality problems in a plastic injection parts to be difficult to be solved. These problems in injection-molded plastic parts are difficult to find the reason because these issues are usually in tradeoff realtions with each other. The purpose of this paper is to obtain the optimum injection moulding condition for improving the quality of plastic injection parts and to inquire the productivity improvement with the measured cycle time by steam plastic moluding injection. Based on these numerical results, the guidelines of mould design and injection processing condition were established. As a result, the improvement of quality and the reduction of cycle time was achieved.

  • PDF

Performance of Carbon Dioxide System for Freezing and Refrigeration (이산화탄소를 이용한 냉동·냉장 시스템의 성능연구)

  • Kim, Yoonsup;Yun, Rin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.2
    • /
    • pp.81-86
    • /
    • 2015
  • Performance of freezing and refrigeration systems in supermarket, which utilized $CO_2$ as a refrigerant, was investigated by using the Pack Calculation II. The configuration of simulated systems was basic parallel refrigeration system, cascade system, and two-stage system. The $CO_2$ cascade system showed higher COP than basic parallel R404A system by 13% for MT and 62% for LT, respectively. Among the $CO_2$ cascade systems, R717(MT)-$CO_2$(LT) showed the highest performance. Open-type intercooler method showed higher performance than liquid injection for the two-stage $CO_2$ systems.

Effects of Die Temperature and CO2 Injection on Physical Properties and Antioxidant Activity of Extruded Rice with Tomato Flour (사출구 온도와 CO2 주입이 쌀·토마토 압출성형물의 물리적 특성 및 항산화 활성에 미치는 영향)

  • An, Sang-Hee;Ryu, Gi-Hyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.6
    • /
    • pp.912-920
    • /
    • 2015
  • The study was designed to investigate the effects of die temperature and $CO_2$ injection on the physical and antioxidant properties of extruded rice with tomato flour. Moisture content and screw speed were fixed at 25% and 150 rpm, respectively. Die temperatures and $CO_2$ injection were adjusted to 80, 110, and $140^{\circ}C$ and 0, and 300 mL/min, respectively. Specific mechanical energy input decreased as die temperature increased from 80 to $140^{\circ}C$. The expansion index increased, while bulk density decreased with $CO_2$ injection. All extrudates showed increased water soluble index (WSI) and water absorption index through the extrusion process. WSI increased as die temperature increased. 1,1-Diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity and total phenolic compounds increased as die temperature increased from 80 to $140^{\circ}C$. Total carotenoid and lycopene contents decreased through the extrusion process. Total carotenoid and lycopene contents upon 0 mL/min $CO_2$ injection and $140^{\circ}C$ die temperature were highest at $6.65{\mu}g/g$ and 2.69 mg/kg, respectively. In conclusion, $CO_2$ injection affects expansion properties while an increased die temperature leads to increased DPPH radical scavenging activity and total phenols.

Lab-Scale Air/Bio-Sparging Study to Remediate Diesel-Contaminated Soil and Groundwater : The Effect of Air Injection Rate and Pattern (디젤오염 토양 및 지하수 복원을 위한 공기주입정화법 실험실 연구 : 공기주입량과 공기주입방식의 영향)

  • Chang, Soon-Woong;Lee, Si-Jin;Cho, Su-Hyung;Yoon, Jun-Ki
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.4
    • /
    • pp.10-17
    • /
    • 2006
  • Laboratory-scale two-dimensional aquifer physical model studies were conducted to assess the effect of air injection rate and air injection pattern on the removal of disel contaminated soil and groundwater by air/bio-sparging. The experimental results were represented that the optimal conditions in this experiment were as air injection rate of 1,000 ml/min and pulsed air injection pattern(15 min on/off). The results of the TPH reduction, DO consumption and $CO_2$ production indicate the effective biodegradation evidence of diesel. Based on our results, The minimal $O_2$ supply and pulsed air injection pattern could effectively enhance the diesel removal and the pulsing air injection had effect on oxygenation in this system. Thus, the cost of operating air/bio-sparging system will be reduced if optimal air injection rate and pulsed air injection pattern are applied to remediate contaminants.

Security and Safety Assessment of the Small-scale Offshore CO2 Storage Demonstration Project in the Pohang Basin (포항분지 해상 중소규모 CO2 지중저장 실증연구 안전성 평가)

  • Kwon, Yi Kyun;Chang, Chandong;Shinn, Youngjae
    • The Journal of Engineering Geology
    • /
    • v.28 no.2
    • /
    • pp.217-246
    • /
    • 2018
  • During the selection and characterization of target formations in the Small-scale Offshore $CO_2$ Storage Demonstration Project in the Pohang Basin, we have carefully investigated the possibility of induced earthquakes and leakage of $CO_2$ during the injection, and have designed the storage processes to minimize these effects. However, people in Pohang city have a great concern on $CO_2$-injection-intrigued seismicity, since they have greatly suffered from the 5.4 magnitude earthquake on Nov. 15, 2017. The research team of the project performed an extensive self-investigation on the safety issues, especially on the possible $CO_2$ leakage from the target formation and induced earthquakes. The target formation is 10 km apart from the epicenter of the Pohang earthquake and the depth is also quite shallow, only 750 to 800 m from the sea bottom. The project performed a pilot injection in the target formation from Jan. 12 to Mar. 12, 2017, which implies that there are no direct correlation of the Pohang earthquake on Nov. 15, 2017. In addition, the $CO_2$ injection of the storage project does not fracture rock formations, instead, the supercritical $CO_2$ fluid replaces formation water in the pore space gradually. The self-investigation results show that there is almost no chance for the injection to induce significant earthquakes unless injection lasts for a very long time to build a very high pore pressure, which can be easily monitored. The amount of injected $CO_2$ in the project was around 100 metric-tonne that is irrelevant to the Pohang earthquake. The investigation result on long-term safety also shows that the induced earthquakes or the reactivation of existing faults can be prevented successfully when the injection pressure is controlled not to demage cap-rock formation nor exceed Coulomb stresses of existing faults. The project has been performing extensive studies on critical stress for fracturing neighboring formations, reactivation stress of existing faults, well-completion processes to minimize possible leakage, transport/leakage monitoring of injected $CO_2$, and operation procedures for ensuring the storage safety. These extensive studies showed that there will be little chance in $CO_2$ leakage that affects human life. In conclusion, the Small-scale Offshore $CO_2$ Storage Demonstration Project in the Pohang Basin would not cause any induced earthquakes nor signifiant $CO_2$ leakage that people can sense. The research team will give every effort to secure the safety of the storage site.

Injection of Waste Plastics into the Blast Furnace and Its Effect on Furnace Conditions

  • Heo, Nam-Hwan;Baek, Chan-Yeong;Yim, Chang-Hee
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.755-758
    • /
    • 2001
  • Most of the waste plastics are incinerated and landfilled now, leading to much environmental problems. The technology of injection into the blast furnace was developed as a useful recycling method of waste plastics, and applied to the actual operation in several ironmaking companies. We carried out the test operation to inject continuously the two kinds of waste plastics through four tuyeres of the Foundry blast furnace in POSCO by 130 ton of total amount. From this test operation, we analyzed the coke replacement ratio, the permeability, the heat load and other changes of furnace conditions with the injection of waste plastics into the blast furnace. Some trials based upon the theoretical approaches were applied to examine the efficiencies of blast furnace.

  • PDF

A Study on rib sink-marks of injection mold for unpainted parts (무도장 적용 사출금형의 리브 Sink에 관한 연구)

  • Ro, Young-Soo;Lim, Jea-Kui;Rhu, Ho-yeun;Lee, Hee-Jin;Hwang, Si-Hyon
    • Design & Manufacturing
    • /
    • v.10 no.1
    • /
    • pp.7-11
    • /
    • 2016
  • Sinks occurring in the rib portion of the testing product for the unpainteds are fatal defects at surface quality. In this study, we carried out moldflow analyses for several factors that affect the sinks. The result tells us large important effective factors on sinks by analyzing sink marks estimate. We expect practical use as reference for performing analysis or manufacturing products with rib designs and injection moldings which minimize sink-marks surrounded ribs.

A Study of CO2 Emission Characteristics on the Vehicle with LPG Direct Injection and Mild Hybrid System (LPG 직분사 엔진과 마일드 하이브리드 시스템 적용 차량의 CO2배출 특성 연구)

  • An, Young kuk;Byeonggyu, Yang;Jinil, Park
    • Journal of ILASS-Korea
    • /
    • v.27 no.4
    • /
    • pp.211-218
    • /
    • 2022
  • Recent vehicle regulations have become increasingly stringent in order to reduce greenhouse gases. Then not only movement to replace internal combustion engine vehicles with hybrid vehicles, but also studies of replacing internal combustion engine fuels with low-pollution fuels are increasing. In this study, the characteristics of a vehicle with LPG fuel engine and mild hybrid system is investigated. To avoid shortage of maximum power on LPG engine, a direct injection system of LPG is applied. In addition, P0 mild hybrid system is adopted to enhence the efficiency of the vehicle. The vehicle model is developed in order to predict fuel economy and CO2 emission of LPDi MHEV.