• Title/Summary/Keyword: Co-Cr-Ta박막

Search Result 31, Processing Time 0.029 seconds

Preparation of Co-Cr-Ta Thin Films using Two step Method For Perpendicular Magnetic recording Layer (Two-Step 방식을 이용한 수직자기 기록용 Co-Cr-Ta 박막의 제작)

  • 박원효;공석현;제우성;최형욱;박용서;김경환
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.7
    • /
    • pp.793-796
    • /
    • 2004
  • In order to improve c-axis crystalline orientation and high perpendicular coercivity of deposited ${Co}_77{Cr}_20{Ta}_3$perpendicualr recording layer, Two step method was investigated using a Facing Targets Sputtering System(FTS). The ${\Delta\theta}_50$ of ${Co}_77{Cr}_20{Ta}_3$recording layer deposited on seedlayer prepared at Room Temperature was as low as $5^\circ$, while that of the recording layer without seedlayer was about 11$^{\circ}$. The Two-Step method using ${Co}_77{Cr}_20{Ta}_3$seedlayer prepared at Room Temperature was shown to be very effective in controling the c-axis orientation of ${Co}_77{Cr}_20{Ta}_3$ recording layer with thin thickness.

Characteristics variation of CoCrTa/Si double layer thin film on variation of underlayer substrate temperature (하지층기판온도에 따른 CoCrTa/Si 이층박막의 특성변화)

  • 박원효;김용진;금민종;가출현;손인환;최형욱;김경환
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.77-80
    • /
    • 2001
  • Crystallographic and magnetic characteristics of CoCr-based magnetic thin film for perpendicular magnetic recording media were influenced on preparing conditions. In these, there is that substrate temperature was parameter that increases perpendicular coercivity of CoCrTa magnetic layer using recording layer. While preparation of CoCr-based doublelayer, by optimizing substrate temperature, we expect to increase perpendicular anisotropy of CoCr magnetic layer and prepare ferromagnetic recording layer with a good quality by epitaxial growth. CoCrTa/Si doublelayer showed a good dispersion angle of c-axis orientation $\Delta$$\theta$$_{50}$ caused by inserting amorphous Si underlayer which prepared at underlayer substrate temperature 250C. Perpendicular coercivity was constant, in-plane coercivity was controlled a low value about 2000e. This result implied that Si underlayer could restrain growth of initial layer of CoCrTa thin film, which showed bad magnetic properties effectively without participating magnetization patterns of magnetic layer. In case of CoCrTa/Si that prepared with ultra thin underlayer, crystalline orientation of CoCrTa was improved rather underlayer thickness 1nm, it was expected that amorphous Si layer played a important role in not only underlayer but also seed layer.t also seed layer.r.

  • PDF

The magnetic characteristics of Co-Cr-(Ta) films (Co-Cr-(Ta)박막의 자기특성)

  • Kim, K-H;Jang, K-U;Kim, J-H;S Nakagawa;M Naoe
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.242-244
    • /
    • 1996
  • The effects of $Co_{67}$C $r_{33}$ underlayer on the crystallographec and magnetic characteristics of the Co-Cr-Ta layer deposited on the underlayer was investigated. The diffraction intensity $I_{p(002)}$ of Co-Cr-Ta layers on the $Co_{67}$C $r_{33}$ layer was stronger than that of single layer and Co-Cr-Ta/Ti double layer. Therefore, the crystallinity of Co-Cr-Ta layer was improved by the $Co_{67}$C $r_{33}$ underlayers rather than Ti ones. However, the coercivity $H_{c}$ of Co-Cr-Ta layers deposited on $Co_{67}$C $r_{33}$ underlayer was as low as 250 Oe even at substrate temperature of 22$0^{\circ}C$. This $H_{c}$ decrease seems to be attributed to the effect of the $Co_{67}$C $r_{33}$ underlayer as well as interval time between deposition of the underlayer and the Co-Cr-Ta layer.yer.layer.yer.

  • PDF

The Effect of Sputter-textured Mo Thin Film on Magnetic properties of CoCrTa/Cr Magnetic Recording Media (Sputter-textured Mo 박막이 CoCrTa/Cr 자기기록매체의 자기적 성질에 미치는 영향)

  • Jo, Sung-Mook;Nam, In-Tak
    • Journal of Industrial Technology
    • /
    • v.21 no.A
    • /
    • pp.221-229
    • /
    • 2001
  • The effect of Mo underlayer on the magnetic properties of CoCrTa/Cr films deposited on glass substrates were investigated. The coercivity increased and the coercivity squareness decreased by introducing Mo underlayer. The coercivity increase was attributed to the increase of in-plane c-axis orientation and magnetic isolation of Co grains deposited on Cr/Mo underlayer. The decrease of coercivity squarenesses seemed to be caused by the increase of magnetic isolation. The increase of magnetic isolation of Co grains was attributed to the diffusion of Mo atoms into grain boundaries of Co films and the physical isolation of Co grains. The coercivity of CoCrTa/Cr/Mo showed maximum values at Mo thickness of $400{\AA}$. The appearance of the maximum coercivity at that thickness was attributed to the development of strong $Co(10{\bar{1}}0)$ and $Co(10{\bar{1}}1)$ preferred orientation.

  • PDF

Magnetic properties and the shapes of magnetic domain for $CoCr_{16.2}Pt_{10.8}Ta_4$ alloy films with the prior deposition of Ti layer ($CoCr_{16.2}Pt_{10.8}Ta_4$ 합금박막의 Ti 우선증착에 따른 자기적 특성과 자구형상변화)

  • 이인선;김동원
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.1
    • /
    • pp.17-22
    • /
    • 2000
  • A quaternary alloy film of $CoCr_{16.2}Pt_{10.8}Ta_4$was investigated for its magnetic properties and c-axis orientation with and without Ti underlayer. Additional elements such as Ta, Pt have been frequently introduced in CoCr alloy film for perpendicular recording as a means of improving magnetic performance. It has been reported that the addition of Pt and Ta in CoCr increase the coercivity and the magnetic isolation of columnar grains, respectively. However, CoCrPtTa perpendicular magnetic layer should be more increased its perpendicular magnetic anisotropy than at present for the application of ultrahigh recording density. The improvement of underlayers and substrate materials is one of the promised schemes to intensify the perpendicular magnetic anisotropy. In this study, the insertion of Ti underlayer shows the remarkable improvement of c-axis orientation compare with the direct deposition on the bare glass. The mechanism about this effect of Ti underlayer on CoCrPtTa is not to be clarified yet. Meanwhile, it is found that the magnetic domain of CoCrPtTa on 20 nm Ti underlayer has the continuous stripe pattern but the one of CoCrPtTa on 90 nm Ti underlayer shows the discrete mass type from the results of MFM investigation. This phenomenon is to be a distinct evidence that the improvement of perpendicular anisotropy by the adoption of Ti underlayer is originated from the reinforcement of the grain boundary segregation in CoCrPtTa alloy. Moreover, the transition of the M-H hysteresis pattern with the thickness of Ti underlayer indicates that the major contribution of Ti underlayer is not the magnetocrystalline anisotropy but the shape anisotropy due to the formation of uniform columnar grains by the nonmagnetic alloy segregation.

  • PDF