• Title/Summary/Keyword: Co-Cr alloys

Search Result 147, Processing Time 0.025 seconds

A Study of Shielding Property of Magnetic Field for the Film Impregnated with Soft Magnetic Powder (연자성 합금분말을 함침시킨 필름의 자계 차폐 특성 연구)

  • Park, Jong-Hyun;Ra, Keuk-Hwan;Kang, Eun-Kyun;Kim, Jin-Woo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.1
    • /
    • pp.211-218
    • /
    • 2014
  • In this paper the magnetic field properties of the soft magnetic alloys (Fe-Si-Cr and Fe-Ni-Cr) are studied in advance for the development of electro-magnetic shielding films, which could be used in the IT Devices (NFC, mobile phone, computer, etc.).As a result each of the selected soft magnetic alloy melts of the corresponding compositions is water-dispersed into the disk-shaped grains, which are soaked in polymer resin, and of which two types of thin film of thickness 0.1mm and 1mm are made by passing through the heating calendar roller. And the magnetic permeability and the shielding effectiveness of the polymer films containing the soft magnetic alloy grains are measured over the whole frequency bands from the low frequency to 10GHz. Before the experiments of the soft magnetic alloy, a special equation is proposed to estimate the permeability of the alloy, and the equation is verified with the pre-published data by MATLAB, and from which the most optimal compositions can be decided. And the SE(Shielding Effectiveness) of the polymer films containing the soft magnetic alloy grains is simulated by the HFSS.

The effect of thermocycling on the bonding of different restorative materials to access opening through porcelain fused to metal restorations

  • Al-Moaleem, Mohammed M.;Shah, Farhan Khalid;Khan, Nausheen Saied;Porwal, Amit
    • The Journal of Advanced Prosthodontics
    • /
    • v.3 no.4
    • /
    • pp.186-189
    • /
    • 2011
  • PURPOSE. Porcelain fused to metal (PFM) crowns provide the best treatment option for teeth that have a large or defective restoration. More than 20% of teeth with PFM crowns or bridges require non-surgical root canal treatment (NSRCT). This may be due to the effect of restorative procedures and the possible leakage of bacteria and or their by-products, which leads to the demise of the tooth pulp. Thus, this study was planned to compare the ability of the restorative materials to seal perforated PFM specimens. MATERIALS AND METHODS. The study evaluates the ability of amalgam, composite or compomer restorative materials to close perforated PFM specimen's in-vitro. Ninety PFM specimens were constructed using Ni-Cr alloys and feldspathic porcelain, and then they were divided into 3 groups: amalgam (A), composite + Exite adhesive bond (B) and compomer + Syntac adhesive bond (C). All the PFM samples were embedded in an acrylic block to provide complete sealing of the hole from the bottom side. After the aging period, each group was further divided into 3 equal subgroups according to the thermocycling period (one week for 70 cycles, one month for 300 cycles and three months for 900 cycles). Each subgroup was put into containers containing dye (Pelikan INK), one maintained at $5^{\circ}C$ and the other at $55^{\circ}C$, each cycle for 30 sec time. The data obtained was analyzed by SPSS, 2006 using one way ANOVA test and student t-test and significant difference level at (P<.01). RESULTS. The depth of dye penetration was measured at the interfaces of PFM and filling materials using Co-ordinate Vernier Microscope. The lowest levels of the dye penetration for the three groups, as well as subgroups were during the first week. The values of dye leakage had significantly increased by time intervals in subgroups A and C. CONCLUSION. It was seen that amalgam showed higher leakage than composite while compomer showed the lowest level of leakage.

In vitro evaluation of the bond strength between various ceramics and cobalt-chromium alloy fabricated by selective laser sintering

  • Bae, Eun-Jeong;Kim, Hae-Young;Kim, Woong-Chul;Kim, Ji-Hwan
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.4
    • /
    • pp.312-316
    • /
    • 2015
  • PURPOSE. This study aimed to present the clinical applicability of restorations fabricated by a new method, by comparing the bond strength of between ceramic powder with different coefficient of thermal expansion and alloys fabricated by Selective laser sintering (SLS). MATERIALS AND METHODS. Fifty Co-Cr alloy specimens ($25.0{\times}3.0{\times}0.5mm$) were prepared by SLS and fired with the ceramic ($8.0{\times}3.0{\times}0.5mm$) (ISO 9693:1999). For comparison, ceramics with different coefficient of thermal expansion were used. The bond strength was measured by three-point bending testing and surfaces were observed with FE-SEM. Results were analyzed with a one-way ANOVA (${\alpha}$=.05). RESULTS. The mean values of Duceram Kiss ($61.18{\pm}6.86MPa$), Vita VM13 ($60.30{\pm}7.14MPa$), Ceramco 3 ($58.87{\pm}5.33MPa$), Noritake EX-3 ($55.86{\pm}7.53MPa$), and Vintage MP ($55.15{\pm}7.53MPa$) were found. No significant difference was observed between the bond strengths of the various metal-ceramics. The surfaces of the specimens possessed minute gaps between the additive manufactured layers. CONCLUSION. All the five powders have bond strengths higher than the required 25 MPa minimum (ISO 9693); therefore, various powders can be applied to metal structures fabricated by SLS.

Effect of Sintering Condition on Tensile Strength of Fe-based Non-equiatomic High Entropy Alloy (철계 비동일분율 고엔트로피 합금의 인장 강도에 미치는 소결 조건 영향)

  • Seo, Namhyuk;Jeon, Junhyub;Kim, Gwanghun;Park, Jungbin;Son, Seung Bae;Lee, Seok-Jae
    • Journal of Powder Materials
    • /
    • v.28 no.3
    • /
    • pp.221-226
    • /
    • 2021
  • We fabricate the non-equiatomic high-entropy alloy (NE-HEA) Fe49.5Mn30Co10Cr10C0.5 (at.%) using spark plasma sintering under various sintering conditions. Each elemental pure powder is milled by high-energy ball milling to prepare NE-HEA powder. The microstructure and mechanical properties of the sintered samples are investigated using various methods. We use the X-ray diffraction (XRD) method to investigate the microstructural characteristics. Quantitative phase analysis is performed by direct comparison of the XRD results. A tensile test is used to compare the mechanical properties of small samples. Next, electron backscatter diffraction analysis is performed to analyze the phase fraction, and the results are compared to those of XRD analysis. By combining different sintering durations and temperature conditions, we attempt to identify suitable spark plasma sintering conditions that yield mechanical properties comparable with previously reported values. The samples sintered at 900 and 1000℃ with no holding time have a tensile strength of over 1000 MPa.

A STUDY ON THE BOND STRENGH OF 4-META ACRYLIC RESIN DENTURE BASE TO COBALT-CHROMIUM ALLOYS (4-META의치상레진과 Cobalt-Chromium계 합금의 접착강도에 관한 연구)

  • Sung, Moo Gyung;Kim, Kwang Nam;Chang, Ik Tae
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.28 no.2
    • /
    • pp.29-51
    • /
    • 1990
  • This study was designed to compre the tensile bond strength of 4-META containging denture base resin to Co-Cr alloys after various surface treatments. Especially the surface treatment of sandblasting the mental with aluminum oxide and treating in oxidizing solution composed of 3% aqueous sulfuric acid with 1% potassium manganate were compared. Effect of surface roughness on bonding was measured after sandblasting with 50um, 300um aluminun oxide and polishing with emery pater. Also the effects of wax and wax solvent on bonding were observed. According to the type of polymerization process, heat-cured Meta-Dent resin and autopolymerizing Meta-Fast resin were used. For some specimnens, the tensile bond strength were measured agter three pre-conditions : 1day after bonding, immersed in water at $75^{\circ}C{\pm}3^{\circ}C$ for 4weeks, under normal ambient condition for 4weeks. The following results were obtained from this study : 1. The bond strengths of resins containing 4-META were significantly higher than those of conventional denture base resins(p<0.05). 2. Autopolymerizing Meta-Fast resin had higher bond strength than heat-cured Meta-Dent, resin(p<0.05). 3. The bond strengths of Biosil and Nobilium to 4-META containging resins were not significally different(p>0.05). 4. Stable adhesion can be achieved when mechanically roughen the metal surface by snadblasting with $50{\mu}m$ aluminum oxide than treating in an oxidizing soluing with potassium manganate(p<0.05). 5. Once the metal surface is contaminated with wax, the bond srtength decreased greatly in spite of wax wash with boiling water. But the bond strength recovered significantly with the use of wax solvent 6. Meta-Dent resin had higher bond strength when roughen the metal surface with $50{\mu}m$ aluminum oxide than with $300{\mu}m$ aluminum oxide(p<0.05). In case of Meta-Fast, resin, the use of $300{\mu}m$aluminum oxide was a little advantageous of bonding, but was statistically insignificant(p>0.05).

  • PDF

Thermal Stability of $\textrm{Fe}_{80-x}\textrm{P}_{10}\textrm{C}_{6}\textrm{B}_{4}\textrm{M}_{x}$(M=Transition Metal) Amorphous Alloys ($\textrm{Fe}_{80-x}\textrm{P}_{10}\textrm{C}_{6}\textrm{B}_{4}\textrm{M}_{x}$(M=Transition Metal) 비정질합금의 열적안정성)

  • Guk, Jin-Seon;Jeon, U-Yong;Jin, Yeong-Cheol;Kim, Sang-Hyeop
    • Korean Journal of Materials Research
    • /
    • v.7 no.3
    • /
    • pp.218-223
    • /
    • 1997
  • At the aim of finding a Fehased amorphous alloy with a wide supercooled liquid region (${\Delta}T_{x}=T_{x}-T_{g}$) before crystallization, the changes in glass transition temperatudfI$T_{g}$ and crystallization temperature ($T_{x}$) by the dissolution of additional M elements were examined for the $Fe_{80}P_{10}C_{6}B_{4}$(x~6at%. M= transition metals) amorphous alloys. The ${\Delta}T_{x}$ value is 27K for the Fe,,,P,,,C,,R, alloy and increases to 40K for the addition of M=4at%Hf, 4at%Ta or 4at%Mo. The increase in ${\Delta}T_{x}$ is due to the increase of $T_{x}$ exceeding the degree in the increase in $T_{g}$. The $T_{g}$ and $T_{x}$ increase with decreasing electron concentration (e/a) from about 7 38 to 7.05. The decrease of e/a also implies the increase in the attractive bonding state between the M elements and other constitutent elements. It is therefore said that $T_{g}$ and $T_{x}$ increase kith increasing attractive bonding force.

  • PDF

Evaluations of Si based ternary anode materials by using RF/DC magnetron sputtering for lithium ion batteries

  • Hwang, Chang-Muk;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.302-303
    • /
    • 2010
  • Generally, the high energy lithium ion batteries depend intimately on the high capacity of electrode materials. For anode materials, the capacity of commercial graphite is unlike to increase much further due to its lower theoretical capacity of 372 mAhg-1. To improve upon graphite-based negative electrode materials for Li-ion rechargeable batteries, alternative anode materials with higher capacity are needed. Therefore, some metal anodes with high theoretic capacity, such as Si, Sn, Ge, Al, and Sb have been studied extensively. This work focuses on ternary Si-M1-M2 composite system, where M1 is Ge that alloys with Li, which has good cyclability and high specific capacity and M2 is Mo that does not alloy with Li. The Si shows the highest gravimetric capacity (up to 4000mAhg-1 for Li21Si5). Although Si is the most promising of the next generation anodes, it undergoes a large volume change during lithium insertion and extraction. It results in pulverization of the Si and loss of electrical contact between the Si and the current collector during the lithiation and delithiation. Thus, its capacity fades rapidly during cycling. Si thin film is more resistant to fracture than bulk Si because the film is firmly attached to the substrate. Thus, Si film could achieve good cycleability as well as high capacity. To improve the cycle performance of Si, Suzuki et al. prepared two components active (Si)-active(Sn, like Ge) elements film by vacuum deposition, where Sn particles dispersed homogeneously in the Si matrix. This film showed excellent rate capability than pure Si thin film. In this work, second element, Ge shows also high capacity (about 2500mAhg-1 for Li21Ge5) and has good cyclability although it undergoes a large volume change likewise Si. But only Ge does not use the anode due to its costs. Therefore, the electrode should be consisted of moderately Ge contents. Third element, Mo is an element that does not alloys with Li such as Co, Cr, Fe, Mn, Ni, V, Zr. In our previous research work, we have fabricated Si-Mo (active-inactive elements) composite negative electrodes by using RF/DC magnetron sputtering method. The electrodes showed excellent cycle characteristics. The Mo-silicide (inert matrix) dispersed homogeneously in the Si matrix and prevents the active material from aggregating. However, the thicker film than $3\;{\mu}m$ with high Mo contents showed poor cycling performance, which was attributed to the internal stress related to thickness. In order to deal with the large volume expansion of Si anode, great efforts were paid on material design. One of the effective ways is to find suitably three-elements (Si-Ge-Mo) contents. In this study, the Si based composites of 45~65 Si at.% and 23~43 Ge at.%, and 12~32 Mo at.% are evaluated the electrochemical characteristics and cycle performances as an anode. Results from six different compositions of Si-Ge-Mo are presented compared to only the Si and Ge negative electrodes.

  • PDF