• Title/Summary/Keyword: Co-Cr alloy

Search Result 302, Processing Time 0.035 seconds

Properties of Nimonic 80A Alloy with Change in the Chemical Compositions and Heat Treatment Paths (화학조성 및 열처리경로 변화에 따른 Nimonic 80A 합금의 특성)

  • Choi Byong-Kang;Jeong Hae-Yong;Bae Cha-Hurn
    • Korean Journal of Materials Research
    • /
    • v.15 no.12
    • /
    • pp.773-779
    • /
    • 2005
  • Properties of Ni-base superalloys of Nimonic 80A alloy system were investigated by the observation of microstructures, precipitates ana hardness as a function of the chemical compositions ana the paths of heat treatment. The higher hardness values showed, the higher Ti/Al ratio among high compositions of Cr and Co element. The lower (Ti+Al) and Fe contents decreased in the same Ti/Al ratio, the higher hardness values showed. This results are considered that coherent deformation was increased with increasing Ti/Al ratio. Hardness showed higher value when Cr contents was $18 wt\%$ less than $21wt\%Cr$. In $3.15 wt\%$Co alloy, $\gamma'$ phase was very fine as around 50nm and, its volume fraction and hardness showed the highest value by 2step-aging treatment.

A Characteristics of the Multiple Repair Welding HAZs in a Low Alloy-Steel(2.25Cr-1.0Mo) (저 합금강재(2.25Cr-1.0Mo) 반복 보수용접 열영향부의 특성)

  • Lee, Chul-Ku;Ahn, Jong-Seok;Lee, Nam-Hyuck;Lee, Gil-Jae
    • Journal of Welding and Joining
    • /
    • v.26 no.1
    • /
    • pp.50-55
    • /
    • 2008
  • A low alloy-steel(2.25Cr-1.0Mo) has been widely used for boiler piping, header and tubes in high temperature and pressure conditions of the thermal power plant. It is common knowledge that the repair welding is permitted two or three times by customary practice rule, but there is no regulation to limit the number of repair welding base on the study heat-affected zone(HAZ), which is the weakest zone when repair welding is under taken, by experiments about the metallographic degradation and mechanical properties. Therefore, this study aims to verify the reliability of 5 times repair welding through conducting the experimental observation in the mechanical and the metallographic change on HAZ varying repair welding times. In results of the experiments, it is concluded that the reliability was kept in HAZ even up to the fifth repairs.

The Influence of Bonding Strength and Interface Characteristics to Bonding Agent and Veneer Ceramics on Metal-Ceramic Prosthetics (결합재와 베니어세라믹이 금속-세라믹 보철물의 전단결합강도와 계면특성에 미치는 영향)

  • Kim, Min-Jung;Choi, Sung-Min;Chung, In-Sung
    • Journal of Technologic Dentistry
    • /
    • v.33 no.4
    • /
    • pp.349-357
    • /
    • 2011
  • Purpose: In this study, for the reasons of observing the changes when using bonding agent with Ni-Cr alloy and Co-Cr alloy and using VM13 and Vintage MP ceramic which have the disparity in coefficient of thermal expansion, it is carried out to evaluate the characteristics of the bonding agent through the analysis of the interface between metal and ceramic and the analysis of bond strength by variable. Methods: The surface treatment was performed on the two kinds of alloy(Ni-Cr alloy and Co-Cr alloy) specimens, which were sandblasted and were treated with bonder application. The metal-ceramic interfaces were analyzed with EPMA in order to ionic diffusion, and the shear test was performed. Results: As a result of observation of metal-ceramic interfacial properties, it was observed that Cr atoms were spread from the alloy body to the ceramic floor in the specimen of Group B. It was also seen that Cr, W atoms were spread from the alloy body to the ceramic floor in the specimen of Group S. In consequence of observing Shear bond strength, it was calculated that the specimen of BSV was 27.75(${\pm}11.21$)MPa, BSM was 27.02(${\pm}5.23$)MPa, BCV was 30.20(${\pm}5.99$)MPa, BCM was 27.94(${\pm}10.76$)MPa, SSV was 20.83(${\pm}2.58$)MPa, SSM was 23.98(${\pm}3.94$)MPa, SCV was 32.32(${\pm}4.68$)MPa, and SCM was 34.54(${\pm}10.63$)MPa. Conclusion: In the metal-ceramic interface of Bellabond plus sample group, diffusion of Cr atoms was incurred and diffusion of C Cr atoms and W atoms in the sample group of $Starloy{(R)}\;C$ was observed. Using bonding agent showed the higher bond strength than using the sand blasting treatment. In the Bellabond plus alloys, the specimen group with the use of binding materials showed higher shear bond strength, but didn't show statistically significant differences (p>0.05). In the $Starloy{(R)}\;C$ alloys, the specimen group with the use of binding materials showed higher shear bond strength and statistically significant differences(p<0.05). In terms of VM13 ceramic, it was in the Bellabond plus alloys that the high shear bond strength was showed, but there's no statistically significant differences(p>0.05). In terms of Vintage MP ceramic, it was in the $Starloy{(R)}\;C$ alloys that the high shear bond strength was showed and statistically significant differences(p<0.05). Metal-ceramic to fracture of the shear strength measurements and an analysis of all aspects of military usage fracture of the composite, respectively.

SHEAR BOND STRENGTH OF HEAT-CURED DENTURE BASE RESIN TO SURFACE TREATED CO-CR ALLOY WITH DIFFERENT METHODS (코발트-크롬 합금의 표면처리에 따른 열중합형 의치상용 레진과의 전단결합강도)

  • Lee, Sang-Hoon;Hwang, Sun-Hong;Moon, Hong-Seok;Lee, Keun-Woo;Shim, June-Sung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.2
    • /
    • pp.216-227
    • /
    • 2007
  • Statement of problem: For the long-term success of removable partial dentures, the bonding between metal framework and denture base resin is one of the important factors. To improve bonding between those, macro-mechanical retentive form that is included metal framework design has been generally used. However it has been known that sealing at the interface between metal framework and denture base resin is very weak, because this method uses mechanical bonding. Purpose: Many studies has been made to find a simple method which induces chemical bond, now various bonding system is applied to clinic. In this experiment, shear bond strengths of heat-cured denture base resin to the surface-treated Co-Cr alloy were measured before and after thermocycling. Chemically treated groups with Alloy $Primer^{TM}$, Super-Bond $C&B^{TM}$, and tribochemically treated group with $Rocatec^{TM}$ system were compared to the beadtreated control group. The data were analyzed with two-way ANOVA. Result: 1. Shear bond strength of bead-treated group is highest, and Alloy $Primer^{TM}$ treated group, Super-Bond $C&B^{TM}$ treated group, RocatecTM system treated group were followed. Statistically significant differences were found in each treated group(p<0.05). 2. Surface treatment and thermocycling affected shear bond strength(p<0.05), however there was no interaction between two factors(p>0.05). 3. Shear bond strengths of bead-treated group and Alloy $Primer^{TM}$ treated group showed no statistically significant difference before and after thermocycling(p>0.05), and those of Super-Bond $C&B^{TM}$ treated group and $Rocatec^{TM}$ system treated group showed statistically significant difference after thermocycling(p<0.05).

Comparison of oxide layers formed on the low-cycle fatigue crack surfaces of Alloy 690 and 316 SS tested in a simulated PWR environment

  • Chen, Junjie;Nurrochman, Andrieanto;Hong, Jong-Dae;Kim, Tae Soon;Jang, Changheui;Yi, Yongsun
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.479-489
    • /
    • 2019
  • Low-cycle fatigue (LCF) tests were performed for Alloy 690 and 316 SS in a simulated pressurized water reactor (PWR) environment. Alloy 690 showed about twice longer LCF life than 316 SS at the test condition of 0.4% amplitude at strain rate of 0.004%/s. Observation of the oxide layers formed on the fatigue crack surface showed that Cr and Ni rich oxide was formed for Alloy 690, while Fe and Cr rich oxide for 316 SS as an inner layer. Electrochemical analysis revealed that the oxide layers formed on the LCF crack surface of Alloy 690 had higher impedance and less defect density than those of 316 SS, which resulted in longer LCF life of Alloy 690 than 316 SS in a simulated PWR environment.

Parent Materials Effect on the Mechanical Property of the Friction Welded Spindle Valve Parts for Marine Engines (선박 엔진용 밸브 스핀들 모재에 따른 마찰 용접 후 기계적 특성 변화)

  • J. W. Shin;J. Y. Park;J. G. Kim
    • Transactions of Materials Processing
    • /
    • v.32 no.3
    • /
    • pp.107-113
    • /
    • 2023
  • The importance of dual-fuel engines has increased for reducing CO2 emissions. However, the low operating temperature of this engine may induce low-temperature corrosion at combustion parts, which reduces the engine service life. To overcome this problem, NiCr38Al4 alloy was developed for valve spindle, but the cost of this alloy is expensive due to its high Cr content. For reducing the manufacturing cost of valve spindle, in the present work, NiCr38Al4 alloy was welded with Nimonic80A alloy by conducting friction welding. The tensile test results show that the strength of friction-welded specimens follows the properties of the lower-strength parent materials, without severe cracks at the interface. The large shear strain and frictional heat from friction welding not only reduce grain size but also induce solute element diffusion at the interfacial region. Because of the low Cr diffusivity compared with Ti, Cr carbides were not observed in the Nimonic80A matrix, while Ti carbides were distributed in both the Nimonic80A and SNCrW matrices.

Hydrolysis Reaction of NaBH4 using Unsupported Co-B, Co-P-B Catalyst (비담지 Co-B, Co-P-B 촉매를 이용한 NaBH4 가수분해 반응)

  • Oh, Sung-June;Jung, Hyeon-Seong;Jeong, Jae-Jin;Na, Il-Chai;Ahn, Ho-Geun;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.53 no.1
    • /
    • pp.11-15
    • /
    • 2015
  • Sodium borohydride, $NaBH_4$, shows a number of advantages as hydrogen source for portable proton exchange membrane fuel cells(PEMFCs). Properties of $NaBH_4$ hydrolysis reaction using unsupported Co-B, Co-P-B catalyst were studied. BET surface area of catalyst, yield of hydrogen, effect of $NaBH_4$ concentration and durability of catalyst were measured. The BET surface area of unsupported Co-B catalyst was $75.7m^2/g$ and this value was 18 times higher than that of FeCrAlloy supported Co-B catalyst. The hydrogen yield of $NaBH_4$ hydrolysis reaction by unsupported catalysts using 20~25 wt% $NaBH_4$ solution was 97.6~98.5% in batch reactor. The hydrogen yield decrease to 95.3~97.0% as the concentration of $NaBH_4$ solution increase to 30 wt%. The loss of unsupported catalyst was less than that of FeCrAlloy supported catalyst during $NaBH_4$ hydrolysis reaction and the loss increased with increasing of $NaBH_4$ concentration. In continuous reactor, hydrogen yield of $NaBH_4$ hydrolysis was 90% using 1.2 g of unsupported Co-P-B catalyst with $3{\ell}/min$ hydrogen generation rate.

The change of magnetic microstructure with Co-22%Cr film thicknesses (Co-22%Cr 자성합금박막에서 박막두계에 따른 자기미세구조 변화)

  • 송오성
    • Journal of Surface Science and Engineering
    • /
    • v.31 no.5
    • /
    • pp.261-265
    • /
    • 1998
  • We investigated compositional separation of Co-23%Cr magnetic alloy thin films with varying film thicknesses. Saturation magnetization and magnetic microstructures were investigated using vibrating sample magnetometer (VSM) and scanning probe microscope (SPM), respectively. Saturation magnetization was as 700 emu/cc for films below 50 nm-thick, and changed to 430 emu/cc for the ones above 2000 nm-thick. This may be due to increment of molar volume of Cr-enriched phase as film thickness increases. The surface grain size in AFM (atomic force microscope) measurement becomes larger as film thickness increases. The MFM (magnetic force microscope) reveals that magnetic microstructure is changed from the fine spherical domains to the maze type domains as film thickness increases. We conclude that employing thickness of Co-22%Cr films below 50 nm is favorable for high density recording in order to enhance perpendicular saturation magnetization and SNR (signal to noise ratio).

  • PDF

Effect of yttrium additives on the shear bond strength of porcelain fused to Ni-Cr alloy for porcelain fused metal crown (도재용착용 Ni-Cr계 합금의 이트륨 첨가물이 도재전단결합강도에 미치는 영향)

  • Woo, Je-Seung;Noh, Se-Ra;Noh, Hyeong-Rok;Lim, Chung-Ha;Lee, Jung-Hwan
    • Journal of Technologic Dentistry
    • /
    • v.41 no.2
    • /
    • pp.71-80
    • /
    • 2019
  • Purpose: In this study, to evaluate the effect of oxide changes on the shear bond strength according to the composition of Ni-Cr alloys for porcelain fused matal crown, T-4 alloys, Zeroy alloys and Zeroy-X alloys were selected. Methods: 20 specimens were fabricated using selected Ni-Cr alloys and porcelain powders. A Ni-Cr alloy having a diameter of 5 mm and a height of 25 mm was produced and the metal surface was polished. Porcelain powder was fired on the polished metal surface to a diameter of 5 mm and a height of 3 mm. The experiment group consisted of three groups, T-4(TNA), Zeroy(ZNA) and Zeroy-X(ZXA). The fabricated specimens were mounted on a jig of a universal testing machine(UTM) and fracture strength was measured by applying a shear force at a UTM crosshead speed of 0.5 mm/min. The fracture strength was calculated as the bond strength between the porcelain and the alloy. The surface of the fractured alloy was analyzed by X-ray diffraction(XRD) and scanning electron microscopy(SEM), and the components of the oxide were measured by energy dispersive X-ray spectroscopy(EDX) line profile method. Results: In SEM, XRD and EDX analysis, yttrium tended to increase the mechanical and chemical bonding forces. The shear bond strength of ZXA group containing yttrium showed the highest value at 27.53 MPa. Conclusion: Based on the results of this study, it is considered that the yttrium-added Ni-Cr alloy is clinically acceptable in porcelain shear bond strength.

3D Printing of Biocompatible PM-materials

  • Dourandish, Mahdi;Godlinski, Dirk;Simchi, Abdolreza
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.252-253
    • /
    • 2006
  • The fabrication of complex-shaped parts out of Co-Cr-Mo alloy and 316L stainless steel by three-dimensional printing (3DP) was studied using two grades of each alloy with average particle size of 20 and $75\;{\mu}m$, respectively. To produce sound specimens, the proper 3DP processing parameters were determined. The sintering behavior of the powders was characterized by dilatometric analysis and by batch sintering in argon atmosphere at $1280^{\circ}$ for 2h. The 3DP process has successfully produced complex-shaped biomedical parts with total porosity of 12-25% and homogenous pore structure, which could be suitable for tissue growth into the pores.

  • PDF