• Title/Summary/Keyword: Co-Cr박막

Search Result 145, Processing Time 0.027 seconds

Preparation of Co-Cr-Ta Thin Films using Two step Method For Perpendicular Magnetic recording Layer (Two-Step 방식을 이용한 수직자기 기록용 Co-Cr-Ta 박막의 제작)

  • 박원효;공석현;제우성;최형욱;박용서;김경환
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.7
    • /
    • pp.793-796
    • /
    • 2004
  • In order to improve c-axis crystalline orientation and high perpendicular coercivity of deposited ${Co}_77{Cr}_20{Ta}_3$perpendicualr recording layer, Two step method was investigated using a Facing Targets Sputtering System(FTS). The ${\Delta\theta}_50$ of ${Co}_77{Cr}_20{Ta}_3$recording layer deposited on seedlayer prepared at Room Temperature was as low as $5^\circ$, while that of the recording layer without seedlayer was about 11$^{\circ}$. The Two-Step method using ${Co}_77{Cr}_20{Ta}_3$seedlayer prepared at Room Temperature was shown to be very effective in controling the c-axis orientation of ${Co}_77{Cr}_20{Ta}_3$ recording layer with thin thickness.

Characteristics variation of CoCrTa/Si double layer thin film on variation of underlayer substrate temperature (하지층기판온도에 따른 CoCrTa/Si 이층박막의 특성변화)

  • 박원효;김용진;금민종;가출현;손인환;최형욱;김경환
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.77-80
    • /
    • 2001
  • Crystallographic and magnetic characteristics of CoCr-based magnetic thin film for perpendicular magnetic recording media were influenced on preparing conditions. In these, there is that substrate temperature was parameter that increases perpendicular coercivity of CoCrTa magnetic layer using recording layer. While preparation of CoCr-based doublelayer, by optimizing substrate temperature, we expect to increase perpendicular anisotropy of CoCr magnetic layer and prepare ferromagnetic recording layer with a good quality by epitaxial growth. CoCrTa/Si doublelayer showed a good dispersion angle of c-axis orientation $\Delta$$\theta$$_{50}$ caused by inserting amorphous Si underlayer which prepared at underlayer substrate temperature 250C. Perpendicular coercivity was constant, in-plane coercivity was controlled a low value about 2000e. This result implied that Si underlayer could restrain growth of initial layer of CoCrTa thin film, which showed bad magnetic properties effectively without participating magnetization patterns of magnetic layer. In case of CoCrTa/Si that prepared with ultra thin underlayer, crystalline orientation of CoCrTa was improved rather underlayer thickness 1nm, it was expected that amorphous Si layer played a important role in not only underlayer but also seed layer.t also seed layer.r.

  • PDF