• Title/Summary/Keyword: Co-22%Cr 합금박막

Search Result 6, Processing Time 0.02 seconds

Magnetic Domain Structures with Substrate Temperatures in Co-22%Cr Alloy Thin Films (자가정렬형 나노구조 Co-22%Cr합금 박막의 기판온도에 따른 미세 도메인 구호)

  • 송오성
    • Journal of the Korean Magnetics Society
    • /
    • v.11 no.5
    • /
    • pp.184-188
    • /
    • 2001
  • Using a DC-sputter and changing the substrate temperature to room temperature and 200$\^{C}$, we manufactured each Co-22%Cr alloy thin-films, which has a uniform micro-structure at room temperature, and a fine self-organized nato structure (SONS) at the inside of the grain at the elevated temperature. We also investigated the microstructure and domain structure using a transmission electron microscope (TEM) and a magnetic force microscope (MFM). We managed to corrode selectively Co-enriched phase, then investigate the microstructure using a TEM. We found that it has a uniform composition when it is manufactured at room temperature, but, we found that it has a unique microstructure, which has a plate-like fine Co-enriched phase, with the formation of SONS at the inside of the grain at the elevated temperature. In MFM characterization, we found maze-type domains at the period of 5000 when the substrate temperature maintains at room temperature. We define that the maze-type domain has a disadvantage at the high density recording because it generates noises easily as the exchange coupling energy between the grains is big. On the other hand, there is only a fine domain structure at the period of 500 when the substrate temperature maintains at 200 $\^{C}$. We define that the fine domain structure has an advantage at the high density magnetic recording because it has thermal stability due to small exchange coupling energy.

  • PDF

The change of magnetic microstructure with Co-22%Cr film thicknesses (Co-22%Cr 자성합금박막에서 박막두계에 따른 자기미세구조 변화)

  • 송오성
    • Journal of the Korean institute of surface engineering
    • /
    • v.31 no.5
    • /
    • pp.261-265
    • /
    • 1998
  • We investigated compositional separation of Co-23%Cr magnetic alloy thin films with varying film thicknesses. Saturation magnetization and magnetic microstructures were investigated using vibrating sample magnetometer (VSM) and scanning probe microscope (SPM), respectively. Saturation magnetization was as 700 emu/cc for films below 50 nm-thick, and changed to 430 emu/cc for the ones above 2000 nm-thick. This may be due to increment of molar volume of Cr-enriched phase as film thickness increases. The surface grain size in AFM (atomic force microscope) measurement becomes larger as film thickness increases. The MFM (magnetic force microscope) reveals that magnetic microstructure is changed from the fine spherical domains to the maze type domains as film thickness increases. We conclude that employing thickness of Co-22%Cr films below 50 nm is favorable for high density recording in order to enhance perpendicular saturation magnetization and SNR (signal to noise ratio).

  • PDF

Self-Organized Nano Structure in Co-22% Cr Alloy Thin Films with Substrate Temperatures (기판온도에 따른 Co-22%Cr 합금박막의자가정렬형 나노구조)

  • 송오성;이영민
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.6
    • /
    • pp.531-536
    • /
    • 2001
  • Co-22 %Cr alloy films are promising for high-density perpendicular magnetic recording media with their perpendicular anisotropy and large coercivity of 3000 Oe. We observed that a self organized nano structure (SONS) of fine ferromagnetic Co-enriched phase and paramagnetic Cr-enriched phase appears inside the grain of Co-Cr magnetic alloy thin films at the elevated substrate temperature after do-sputtering. The periodic fine Co-enriched phase and Cr-enriched phase is the plate shape of 80 (equation omitted)-wide and 1000 (equation omitted)-long. Cr-enriched phases are located at the center of grains. We prepared 5000 (equation omitted) -thick Co-22 %Cr films on polyimide substrate with varying substrate temperature of $ 30^{\circ}C$, $ 150^{\circ}C$ ,200 $^{\circ}C$, $300^{\circ}C$, and $400^{\circ}C$, respectively. A transmission electron microscope equipped with energy dispersive X-ray analyzer is employed to observe the microstructure of each samples after Co-enri-ched phase are etched selectively. The self organized nano structure of Co-enriched and Cr-enriched lamellar is observed above the substrate temperture of $150^{\circ}C$. No compositional change is observed with substrate temperature. The compositional phase separation in self organized structure becomes clear as the substrate temperature increases. Our results implies that the self organized nano structure in Co-22 %Cr film is ideal for ultra high density recording media by recording selectively on Co-enri-ohed phase.

  • PDF

Magnetic properties and the shapes of magnetic domain for $CoCr_{16.2}Pt_{10.8}Ta_4$ alloy films with the prior deposition of Ti layer ($CoCr_{16.2}Pt_{10.8}Ta_4$ 합금박막의 Ti 우선증착에 따른 자기적 특성과 자구형상변화)

  • 이인선;김동원
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.1
    • /
    • pp.17-22
    • /
    • 2000
  • A quaternary alloy film of $CoCr_{16.2}Pt_{10.8}Ta_4$was investigated for its magnetic properties and c-axis orientation with and without Ti underlayer. Additional elements such as Ta, Pt have been frequently introduced in CoCr alloy film for perpendicular recording as a means of improving magnetic performance. It has been reported that the addition of Pt and Ta in CoCr increase the coercivity and the magnetic isolation of columnar grains, respectively. However, CoCrPtTa perpendicular magnetic layer should be more increased its perpendicular magnetic anisotropy than at present for the application of ultrahigh recording density. The improvement of underlayers and substrate materials is one of the promised schemes to intensify the perpendicular magnetic anisotropy. In this study, the insertion of Ti underlayer shows the remarkable improvement of c-axis orientation compare with the direct deposition on the bare glass. The mechanism about this effect of Ti underlayer on CoCrPtTa is not to be clarified yet. Meanwhile, it is found that the magnetic domain of CoCrPtTa on 20 nm Ti underlayer has the continuous stripe pattern but the one of CoCrPtTa on 90 nm Ti underlayer shows the discrete mass type from the results of MFM investigation. This phenomenon is to be a distinct evidence that the improvement of perpendicular anisotropy by the adoption of Ti underlayer is originated from the reinforcement of the grain boundary segregation in CoCrPtTa alloy. Moreover, the transition of the M-H hysteresis pattern with the thickness of Ti underlayer indicates that the major contribution of Ti underlayer is not the magnetocrystalline anisotropy but the shape anisotropy due to the formation of uniform columnar grains by the nonmagnetic alloy segregation.

  • PDF

Magnetic Property Evolution of Co-22%Cr Alloy Thin Films with Self-Organized Nano Structure Formation (Co-22%Cr 합금박막의 자가정렬형 나노구조에 의한 자기적 물성)

  • Song, O-Seong;Lee, Yeong-Min
    • Korean Journal of Materials Research
    • /
    • v.11 no.12
    • /
    • pp.1042-1046
    • /
    • 2001
  • Co-22%Cr alloy films are promising for high-density perpendicular magnetic recording media with their perpendicular anisotropy and large coercivity of 3000 Oe. We observed that a self organized nano structure(SONS) of fine ferromagnetic Co-enriched phase and paramagnetic Cr-enriched phase appears inside the grain of Co-Cr magnetic alloy thin films at the elevated substrate temperature after do-sputtering. We prepared 1000 $\AA$-thick Co-22%Cr films on 2000 $\AA$- SiO$_2$/Si(100) substrates at the deposition rate of 100 $\AA$/min with substrate temperatures of 3$0^{\circ}C$, 10$0^{\circ}C$, 15$0^{\circ}C$, 20$0^{\circ}C$, 30$0^{\circ}C$, and 40$0^{\circ}C$, respectively. We employed a vibrating sample magnetometer(VSM) to measure the B-H loops showing the saturation magnetifation, coercivity, remanence in in- plane and out- of- plane modes. In- plane coercivity, perpendicular coercivity, and perpendicular remanence increased as substrate temperature increased, how-ever they decreased after 30$0^{\circ}C$ slowly. Transmission electron microscope (TEM) characterization revealed that the self organized nano structure (SONS) appears at the elevated substrate temperature, which forms fine Co-enriched phases inside a grain, then it eventually affect the perpendicular magnetic property. Our results imply that we may tune the perpendicular magnetic properties with SONS obtained at appropriate substrate temperature.

  • PDF