• Title/Summary/Keyword: Co powder

Search Result 2,088, Processing Time 0.032 seconds

Effect of Carrier Gas on the Microstructure and Magnetic Properties of Co Nanoparticles Synthesized by Chemical Vapor Condensation (화학기상응축공정(Chemical Vapor Condensation)으로 제조된 Co 나노분말의 미세구조 및 자기적 성질에 미치는 운송기체의 영향)

  • ;X. L. Dong
    • Journal of Powder Materials
    • /
    • v.11 no.1
    • /
    • pp.16-21
    • /
    • 2004
  • The nano-sized Co particles were successfully synthesized by chemical vapor condensation (CVC) process using the precursor of cobalt carbonyl ($Co_2(CO)_8$). The influence of carrier gases on the microstructure and magnetic properties of nanoparticles was investigated by means of XRD, TEM, XPS and VSM. The Co nano-particles with different phases and shapes were synthesized with a change of carrier gas : long string morphologies with coexistence of fcc and hcp structure in Ar carrier gas condition; finer Co core in a mass of cobalt oxide with only fcc structure in He; rod type cobalt oxide phase in Ar+6vol%$O_2$. The saturation magnetization and coercivity was lower in Co nanoparticles synthesized in He carrier gas, due to their finer size.

Characterization of Fe-Co Nanocomposite Powders Produced by Chemical Vapor Condensation Methods (화학기상응축법으로 제조한 Fe-Co 나노복합 분말의 미세구조와 자기적 특성)

  • ;Z. H. Wang;;;Z. D. Zhang
    • Journal of Powder Materials
    • /
    • v.9 no.5
    • /
    • pp.322-328
    • /
    • 2002
  • Fe-Co nanocomposite powders with different composition were prepared by chemical vapor condensation (CVC) process and their characterizations were studied by means of X-ray diffraction, transmission electron microscopy, and vibrating sample magnetometer. The particles having the mean size of 5~25 nm consisted of metallic cores and oxide shells. The Co contents and particle size increased with increasing the carrier gas flow rate of Co precursor. The saturation magnetization and coercivity increased with increasing Co content. and the saturation magnetization maximized at the 40 wt.%Co. The Fe-Co nanocomposite powder oxidized at $400^{\circ}C$ showed the maximum coercivity of 1739 Oe.

Effect of Limestone Powder on Hydration of C3A-CaSO4·2H2O System (C3A-CaSO4·2H2O 계의 수화반응에 미치는 석회석 미분말의 영향)

  • Lee, Jong-Kyu;Chu, Yong-Sik;Song, Hun
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.6
    • /
    • pp.584-588
    • /
    • 2011
  • In this work, effects of limestone powder on hydration of $C_3A-CaSO_4{\cdot}2H_2O$ system was discussed based on the XRD Quantitative analysis, and the possibility of Delayed Ettringite Formation was also discussed. The early hydration of $C_3A$ was delayed by addition of $CaCO_3$ powder. The delay effect was enhanced by increasing of $CaCO_3$ content and finer powder of $CaCO_3$ addition. After consumption of $CaSO_4{\cdot}2H_2O$, the reaction of $CaCO_3$ is started. Delayed Ettringite Formation would take place because monosulfoaluminate is not stable in presence of $CaCO_3$. In order to prevent the delayed ettringite formation in $C_3A-CaSO_4{\cdot}2H_2O-CaCO_3$ system, the reduction of monosulfoaluminate formation is important. Therefore, by increasing the amount of $CaCO_3$ addition and finer $CaCO_3$ powder addition, the delayed ettringite formation can be prevented.

Analysis in Microstructures and Co Volume of WC Powder According to the Lifespan of WC-Co Molds for Cold Forging (냉간단조용 WC-Co 금형의 수명에 미치는 WC 분말의 미세구조 및 Co 부피 분율의 분석)

  • Jeongseok Oh;Jini Park;Sang-yeob Lee;Choong-Heui Chung;Jeong-muk Choi;Joon sik Park
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.5
    • /
    • pp.270-276
    • /
    • 2023
  • In this study, we analyzed two types of cold forging dies commonly used for manufacturing general nuts and screws to investigate the differences in WC powder according to the lifespan. For both Type I and Type II dies, it was observed that as the lifespan of the molds increases, the area fraction of Co becomes larger and the size of the powder becomes smaller. Moreover, there is a trend where the strength also increases as the lifespan gets longer. Actually, the hardness value of the sample with the longest lifespan is ~ 131 HV higher than the specimen of the shortest lifespan, It is noted that the reduction in toughness of the WC-Co mold is caused by insufficient Co and the decrease in contact surface area of WC-Co results in a reduced bonding surface area. The lifespan of cold-working WC molds increases when the W content and the volume fraction of WC are high, and the size of the WC powder is small. The results can significantly enhance producing high-quality molds with an extended lifespan using WC powder for cold forging.

A Study on the Development of Baby Powder Using Silk gland Powder of Silkworm (누에생실샘 미세분말을 이용한 베이비파우더 소재 개발에 대한 연구)

  • Chon, Jeong-Woo;Kweon, Haeyong;Jo, You-Young;Ryu, Kang-Sun;Lee, Kwang-Gill;Yeo, Joo-Hong;Kang, Pil-Don;Nam, Sung-Hee;Park, Kwang-Young;Kim, Mi-Ja;Park, Myung-Ki;Son, Yong-Ho;Kim, Sung-Hyun;Kim, Sang-Gyu;Im, Sung-Bin;Choi, Byung-Hoon;Ha, Soo-Yeon;Lee, Heui-Sam
    • Journal of Sericultural and Entomological Science
    • /
    • v.50 no.1
    • /
    • pp.20-26
    • /
    • 2012
  • In this study, silk gland powder of silkworm were investigated to see the possibility for baby powder cosmetics materials. To test possibility as a baby powder cosmetics, total content rate of amino acids, DPPH free radical scavenging assay, MTT assay, and clinical trial were done. According to the result of the analysis of the amino acids of silk gland powder, serin (26.77%) content was the highest and asparatic acid (15.47%), and glycine (9.62%) were followed. DPPH free radical scavenging activity of silk gland powder was lower than vitamin C by 82.3% and 97%, respectively, which is relatively good. Moisture effect were increased in silk gland powder compared to control cosmetics by 50%. Also, silk gland powder was classified as a practically non-irritating material based on the score 0.05 of primary irritation index. Thus, these results suggest that silk gland powder of silkworm may have beneficial properties as a material for baby powder cosmetics.

Feasibility Study of HDDR and Mechanical Milling Processes for Preparation of High Coercivity SmCo5 Powder

  • Kwon, H.W.
    • Journal of Magnetics
    • /
    • v.8 no.3
    • /
    • pp.124-127
    • /
    • 2003
  • HDDR (hydrogenation, disproportionation, desorption, recombination) and mechanical milling processes have been applied to the $SmCo_{5}$ alloy in an attempt to produce a highly coercive powder. The $SmCo_{5}$ alloy had very high structural stability under the hydrogen atmosphere and the 1:5 phase was only partially disproportionated under up to 10 kgf/$\textrm{cm}^2$ hydrogen gas. The partially disproportionated material was recombined not into 1:5 phase after the HDDR, but rather into multi-phase mixture consisting of 1:5, 2:17, 2:7 and 1:7 phases. The $SmCo_{5}$ alloy HDDR-treated with hydrogen up to 10 kgf/$\textrm{cm}^2$ had poor coercivity. For a useful HDDR to prepare a high coercivity $SmCo_{5}$ alloy powder, much higher hydrogen pressure well exceeding 10 kgf/$\textrm{cm}^2$ would be required. The $SmCo_{5}$ alloy lump was amorphized by an intensive mechanical milling, and it was crystallised ultra-finely by a subsequent optimum annealing. The optimally annealed material had very high coercivity, and it was found that the mechanical milling followed by an annealing was an effective way of producing highly coercive $SmCo_{5}$ alloy powder.

Effects of $BaCO_3$ purity on the superconducting properties of top seeded melt growth processed $Y_{1+x}Ba_2Cu_3O_y$ superconductors

  • Choi, J.S.;Park, S.D.;Jun, B.H.;Han, Y.H.;Sung, T.H.;Choo, K.N.;Kim, C.J.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.2
    • /
    • pp.7-10
    • /
    • 2009
  • Effects of $BaCO_3$ purity on the superconducting properties of top seeded melt growth (TSMG) processed $Y_{1+x}Ba_2Cu_3O_{7-y}$ (Y1+x, x=0.1 and 0.2) superconductors were investigated. $YBa_2Cu_3O_{7-y}$ (Y123) powder prepared using $BaCO_3$ with 99.75% purity and commercially available Y123 powder of 99.9% were used for the fabrication of single Y123 grain superconductors. $T_c$ values of the Y1+x samples prepared using low purity Y123 powder were slightly lower than those of the samples prepared using a high purity powder. In addition to the lower $T_c$, an anomalous peak effect in the intermediate magnetic fields was observed in Y1+x samples prepared using the low purity $BaCO_3$ powder. The slight decrease in $T_c$ and the anomalous peak effect are ascribed to the possible incorporation of a Y123 phase with impurity elements such as strontium and calcium included in the $BaCO_3$powder of 99.7%. The result suggests that the low purity $BaCO_3$ powder of a low price can be used as a raw power for the fabrication of single grain YBCO bulk superconductors.