• Title/Summary/Keyword: Co catalyst

Search Result 1,250, Processing Time 0.022 seconds

Polymeric Micelle Using Poly((R)-3-hydroxybutyric acid)/Poly(ethylene glycol) Amphiphilic Block Copolymer for Drug Delivery System (Poly((R)-3-hydroxybutyric acid)/Poly(ethylene glycol) 양친성 블록 공중합체를 이용한 약물전달체용 고분자 미셀)

  • Jeong, Kwan-Ho;Kim, Young-Jin
    • Polymer(Korea)
    • /
    • v.30 no.6
    • /
    • pp.512-518
    • /
    • 2006
  • A biodegradable polymer poly((R) -3-hydroxybutyric acid) (PHB) was conjugated with a hydrophilic polymer poly(ethylene glycol) (PEG) by the ttansesterification reaction to form the amphiphilic block copolymer. PHB with low molecular weight ($3000{\sim}30000$) was appropriated for the drug delivery materials. High molecular weight PHB was hydrolyzed by an acid-catalyst to produce the low molecular weight one. Amphiphilic block copolymer was formed the self-assembled polymeric micelle system in the aqueous solution that the hydrophillic PEG was wraped the hydrophobic PHB. Generally, polymeric micelle forms the small particle between $10{\sim}200nm$. These polymeric micelle systems have been widely used for the drug delivery systems because they were biodegradable, biocompatible, non-toxic and patient compliant. The hydroxyl group of PEG was substituted with carboxyl group which has the reactivity to the ester group of PHB. Amphiphilic block copolymer was conjugated between PHB, and modified PEG at $176^{\circ}C$ which was higher than the melting point of PHB. Transesterification reaction was verified with DSC, FTIR, $^1H-NMR$. In the aqueous solution, critical micelle concentration (CMC) of the mPEG-co-PHB copolymer measured by the fluororescence scanning spectrometer was $5{\times}10^{-5}g/L$. The shape and size of the nanoparticle was taken by dynamic light scattering and atomic force microscopy. The size of the nanoparticle was about 130 nm and the shape was spherical. Our polymeric micelle system can be used as the passive targeting drug delivery system.

Performance Comparison of Spray-dried Mn-based Oxygen Carriers Prepared with γ-Al2O3, α-Al2O3, and MgAl2O4 as Raw Support Materials

  • Baek, Jeom-In;Kim, Ui-Sik;Jo, Hyungeun;Eom, Tae Hyoung;Lee, Joong Beom;Ryu, Ho-Jung
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.2
    • /
    • pp.285-291
    • /
    • 2016
  • In chemical-looping combustion, pure oxygen is transferred to fuel by solid particles called as oxygen carrier. Chemical-looping combustion process usually utilizes a circulating fluidized-bed process for fuel combustion and regeneration of the reduced oxygen carrier. The performance of an oxygen carrier varies with the active metal oxide and the raw support materials used. In this work, spraydried Mn-based oxygen carriers were prepared with different raw support materials and their physical properties and oxygen transfer performance were investigated to determine that the raw support materials used are suitable for spray-dried manganese oxide oxygen carrier. Oxygen carriers composed of 70 wt% $Mn_3O_4$ and 30 wt% support were produced using spray dryer. Two different types of $Al_2O_3$, ${\gamma}-Al_2O_3$ and ${\alpha}-Al_2O_3$, and $MgAl_2O_4$ were applied as starting raw support materials. The oxygen carrier prepared from ${\gamma}-Al_2O_3$ showed high mechanical strength stronger than commercial fluidization catalytic cracking catalyst at calcination temperatures below $1100^{\circ}C$, while the ones prepared from ${\alpha}-Al_2O_3$ and $MgAl_2O_4$ required higher calcination temperatures. Oxygen transfer capacity of the oxygen carrier prepared from ${\gamma}-Al_2O_3$ was less than 3 wt%. In comparison, oxygen carriers prepared from ${\alpha}-Al_2O_3$ and $MgAl_2O_4$ showed higher oxygen transfer capacity, around 3.4 and 4.4 wt%, respectively. Among the prepared Mn-based oxygen carriers, the one made from $MgAl_2O_4$ showed superior oxygen transfer performance in the chemical-looping combustion of $CH_4$, $H_2$, and CO. However, it required a high calcination temperature of $1400^{\circ}C$ to obtain strong mechnical strength. Therefore, further study to develop new support compositions is required to lower the calcination temperature without decline in the oxygen transfer performance.

Synthesis and Charaterization of Polymerizable Acryl's Emulsifier to prepare Green Glue (친환경 접착제 제조용 아크릴계 반응성 유화제의 합성)

  • Jeong, Noh-Hee;Park, Jong-Kwon;Kang, Yun-Seok
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.51-57
    • /
    • 2016
  • In this study, we synthesized reactive surfactant which have functional radical group for effective chemical reaction. Reactive surfactant have been synthesized using synthesis of polyoxyethylene lauryl ether(POE 23) which is nonionic surfactant and methacrylic acid, acrylic acid. benzene was used as the solvent, p-TsOH was used as the catalyst. synthesized surfactant was confirmed by FT-IR, $^1H$-NMR spectra, and elemental analysis. Evaluation of physical properties was measured HLB, cloud point, surface tension, the critical micelle concentration, emulsifying power. HLB number was evaluated 11.62 to 12.09 range. The Critical Micelle Concentration(cmc) values evaluated was $1{\times}10^{-4}{\sim}5{\times}10^{-4}mol/L$ by surface tension method. The cloud point was $35^{\circ}C$, $39^{\circ}C$ each. The emulsifymvcqa ing properties of the synthesized surfactants was lower than polyoxyethylene lauryl ether. In addition, soybean oil was better than benzene. The experimental results confirmed the ester bond, the yield of 93.27%, 94.49% was found.

Oxygen-deficient Reduced TiO2-X: Surface Properties and Photocatalytic Activity

  • Sinhamahapatra, Apurba;Jeon, Jong-Pil;Yu, Jong-Sung
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.59-75
    • /
    • 2016
  • Reduced or black $TiO_{2-x}$ materials with oxygen-deficiency have been achieved by creating oxygen vacancies and/or defects at the surface using different methods. Fascinatingly, they exhibited an extended absorption in VIS and IR instead of only UV light with bandgap decrease from 3.2 (anatase) to ~1 eV. However, despite the dramatic enhancement of optical absorption in black $TiO_{2-x}$ materials, they have failed to show expected visible light-assisted water splitting efficiency. This was ascribed to the high concentration of the surface defects and/or oxygen vacancies, considered as an electron donor to enhance donor density and improve the charge transportation in black $TiO_2$ can also act as charge recombination centers, which eventually decrease photocatalytic activity. Therefore, a black ot reducd $TiO_2$ material with optimized properties would be highly desired for visible light photocatalysis. In this report, a new controlled magnesiothermic reduction has been developed to synthesize reduced black $TiO_{2-x}$ in the presence $H_2/Ar$ for photocatalytic $H_2$ production from methanol-water system. The material possesses an optimum band gap and band position, oxygen vacancies, and surface defects and shows significantly improved optical absorption in the visible and infrared region. The synergistic effects enable the reduced $TiO_{2-x}$ material to show an excellent hydrogen production ability along with long-term stability under the full solar wavelength range of light and visible light, respectively, in the methanol-water system in the presence of Pt as a co-catalyst. These values are superior to those of previously reported black $TiO_2$ materials. On the basis of all the results, it can be realized that the outstanding activity and stability of the reduced of $TiO_{2-x}$ NPs suggest that a balanced combination of different factors like $Ti^{3+}$, surface defects, oxygen vacancy, and recombination center is achieved along with optimized bandgap and band position during the preparation employing magnesiothermic reduction in the presence of $H_2$. The controlled magnesiothermic reduction in the presence of $H_2$ is one of the best alternative ways to produce active and stable $TiO_2-based$ photocatalyst for $H_2$ production.

  • PDF

Thermal stabilizing effect of Yb3+ Er3+ codoping into TiO2 powder prepared by sol-gel method and its upconversion characteristic (Yb3+ Er3+ ions 동시도핑에 의한 TiO2 분말의 열적 안정성 증가효과와 upconversion 특성 연구)

  • Eun, Jong-Won;Oh, Dong-Keun;Kim, Kwang-Jin;Hong, Tae-Ui;Jeong, Seong-Min;Choi, Bong-Geun;Shim, Kwang-Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.4
    • /
    • pp.173-177
    • /
    • 2010
  • Thermal stabilizing effect of $Yb^{3+},\;Er^{3+}$ codoping into $TiO_2$ powder prepared by sol-gel method and its upconversion characteristics were analyzed. The effect of $TiO_2:Yb^{3+},\;Er^{3+}$ ions on crystallinity and phase transition was studied by X-ray diffraction (XRD). The change of band-gap energy induced from Yb and Er codoping was analyzed by UV-Vis. The band-gap energy of $TiO_2$ have been slightly narrowed by $Yb^{3+},\;Er^{3+}$ codoping, which indicated that the $Yb^{3+},\;Er^{3+}$ ions can enhance the photo-catalytic property of $TiO_2$. green and red up-conversions of $Yb^{3+}$ and $Er^{3+}$ co-doped $Y_2O_3:Yb^{3+},\;Er^{3+}$ phosphor were analyzed by PL equipped with 980 nm laser.

Coolant Leak Effect on Polymer Electrolyte Membrane Fuel Cell (고분자전해질연료전지의 냉각수 누설에 대한 연구)

  • Song, Hyun-Do;Kang, Jung-Tak;Kim, Jun-Bom
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.4
    • /
    • pp.301-305
    • /
    • 2007
  • The performance of polymer electrolyte membrane fuel cell could be decreased due to coolant leaked from connection part. Micro pump was used to put small amount of coolant and investigate the effect on fuel cell. The stoichiometric ratio of hydrogen/air was 1.5/2.0, both side of gas was fully humidified, and current density of $400mA/cm^2$ was used as standard condition in this experiment. Constant current method was used to check performance recovery from coolant effect in 3 cell stack. The performance was recovered when coolant was injected in cathode side. On the other hand, the performance was not recovered when coolant was injected in anode side. Ethylene glycol could be converted to CO in oxidation process and cause poisoning effect on platinum catalyst or be adhered on GDL and cause gas diffusion block effect resulting performance decrease. Water with nitrogen gas was supplied in anode side to check performance recovery. Polarization curve, cyclic voltammetry, electrochemical impedance spectroscopy was used to check performance, and gas chromatography was used to check coolant concentration. Constant current method was not enough in full recovery of performance. However, water injection method was proved good method in full recovery of performance.

Detoxification of PCBs Containing Transformer Oil by Catalytic Hydrodechlorination in Supercritical Fluids (초임계유체 내 수첨탈염소반응에 의한 PCBs가 함유된 절연유의 무해화 연구)

  • Choi, Hye-Min;Kim, Jae-Hoon;Kim, Jae-Duck;Kang, Jeong-Won
    • Clean Technology
    • /
    • v.15 no.1
    • /
    • pp.9-15
    • /
    • 2009
  • Catalytic hydrodechlorination of PCBs (polychlorinated biphenyls) included in the transformer oil was carried out to detoxify PCBs and to recycle the treated oil. Catalysts such as 0.98 wt% Pt and 0.79 wt% Pd on ${\gamma}$-alumina (${\gamma}-Al_2O_3$) support, 12.8 wt% Ni on ${\gamma}-Al_2O_3$, and 57.6 wt% Ni on silica-alumina ($SiO_2-Al_2O_3$) support were used for the catalytic hydrodechlorination. Various supercritical fluids such as carbon dioxide, propane and isobutane were used as reaction media. The effects of reaction temperature, reaction time, catalysts, and supercritical fluids on the catalytic hydrodechlorination were examined in detail. The detoxification degree increased in the order of Ni > Pd > Pt. This is possibly due to higher metal loading and larger metal size of the Ni catalyst. Below $175^{\circ}C,\;scCO_2$ was found as the most effective reaction media for the catalytic hydrodechlorination of PCBs included in the transformer oil.

Application of CFD Methods to Improve Performance of Denitrification Facility (탈질 설비의 성능 개선을 위한 CFD 기법 적용에 관한 연구)

  • Min-Kyu Kim;Hee-Taeg Chung
    • Clean Technology
    • /
    • v.29 no.4
    • /
    • pp.305-312
    • /
    • 2023
  • Due to the strengthening of environmental requirements, aging denitrification facilities need to improve their performance. The present study aims to suggest the possibility of improving performance using computational analysis techniques. This involved modifying both the geometric design and the operating conditions, including the flow path shape of the equipment such as the inlet guide vane and the curved diffusing part, and the flow control of the ammonia injection nozzle. The conditions presented in this study were compared with existing operating conditions in terms of the flow uniformity, the NH3/NO molar ratio of the mixed gas flowing into the catalyst layer, and the total pressure drop of the facility. The flow field applied in the computational analysis ranged from the outlet of the economizer in the combustion furnace to the inlet of the air preheater, the full domain of the denitrification facility. The performances were derived by solving the flow fields using ANSYS-Fluent and the injection amount of ammonia was adjusted for each nozzle using Design Xplorer. Compared to the denitrification performances of the equipment currently in operation, the conditions proposed in this study showed an improvement in the flow uniformity and NH3/NO composition ratio by 45.1% and 8.7%, respectively, but the total pressure drop increased by 1.24%.

Studies on the Deactivation-resistant Ru Catalyst (Ru 촉매의 비활성화 억제를 위한 연구)

  • Kim, Young-Kil;Yie, Jae-Eui;Cho, Sung-June;Ryoo, Ryong
    • Applied Chemistry for Engineering
    • /
    • v.5 no.5
    • /
    • pp.808-818
    • /
    • 1994
  • Effects of ceria additive on the activity and thermal aging behavior of supported Ru catalysts were investigated using Ru/${\gamma}$-$Al_2O_3$and Ru/$CeO_2$-${\gamma}$-$Al_2O_3$. The catalysts were characterized by $^{129}Xe$-NMR and $H_2$ chemisorption. The cataltic activity for conversion of CO, HC and $NO_x$ was measured using simulated automobile engine exhausts under lean, rich and stoichiometric conditions. For both fresh and aged catalysts, Ru/$CeO_2$-${\gamma}$-$Al_2O_3$ was more active than Ru/${\gamma}$-$Al_2O_3$ for all three pollutants. Results of $^{129}Xe$-NMR and $H_2$ chemisorption indicated that sintering of Ru particles occurred to the same extent for both catalysts during the thermal aging process. After thermal aging at 673K, however, the catalytic activity of the aged Ru/$CeO_2$-${\gamma}$-$Al_2O_3$ was substantially higher than that of the fresh one, while the activity of Ru/${\gamma}$-$Al_2O_3$ decreased after the thermal aging. This finding may suggest new active sites were created during the thermal aging, probably in the vicinity of the interface between Ru and Ce. For more quantitative investigation of the effect of a cation such as Ce on the thermal aging of Ru metal particles, Ru catalysts supported on cation-exchanged Y-zeolites were used as the model catalysts. The results indicated that when Ba, Ca, La, Y or Ce was used for the cation exchange, the exchanged cation did not affect the thermal aging behavior of Ru in Y-zeolite, as evidenced by $^{129}Xe$-NMR and EXAFS.

  • PDF

Effects of SiO2 Incorporation on Catalytic Performance and Physico-Chemical Properties of Iron-Based Catalysts for the Fischer-Tropsch Synthesis (Fischer-Tropsch 합성반응용 Fe계 촉매의 성능 및 물리화학적 특성에 미치는 SiO2 첨가효과)

  • Hyun, Sun-Taek;Chun, Dong Hyun;Kim, Hak-Joo;Yang, Jung Hoon;Yang, Jung-Il;Lee, Ho-Tae;Lee, Kwan-Young;Jung, Heon
    • Korean Chemical Engineering Research
    • /
    • v.48 no.3
    • /
    • pp.304-310
    • /
    • 2010
  • The FTS(Fischer-Tropsch synthesis) was carried out over precipitated iron-based catalysts with or without $SiO_2$ in a fixed-bed reactor at $250^{\circ}C$ and 1.5 MPa. The catalysts with $SiO_2$ showed much higher catalytic activity for the FTS than those without $SiO_2$, displaying excellent stability during 144 h of reaction. The X-ray diffraction and $N_2$ physisorption revealed that the catalysts with $SiO_2$ showed enhanced dispersion of $Fe_2O_3$ compared with those without $SiO_2$. Also, the results of temperature-programmed reduction by $H_2$ showed that the addition of $SiO_2$ markedly promoted the reduction of $Fe_2O_3$ into $Fe_3O_4$ and FeO at low temperatures below $260^{\circ}C$. In contrast, surface basicity of the catalysts, which was analyzed by temperature-programmed desorption of $CO_2$, decreased as a result of $SiO_2$ addition. We attribute the high and stable performance of the catalysts with $SiO_2$ to the improved dispersion and reducibility by the $SiO_2$ addition.