• Title/Summary/Keyword: Co Covid-19

Search Result 351, Processing Time 0.027 seconds

Expression and Immunogenicity of SARS-CoV-2 Virus-Like Particles based on Recombinant Truncated HEV-3 ORF2 Capsid Protein

  • Zhou, Yong-Fei;Nie, Jiao-Jiao;Shi, Chao;Ning, Ke;Cao, Yu-Feng;Xie, Yanbo;Xiang, Hongyu;Xie, Qiuhong
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.10
    • /
    • pp.1335-1343
    • /
    • 2022
  • COVID-19 is an emerging disease that poses a severe threat to global public health. As such, there is an urgent demand for vaccines against SARS-CoV-2, the virus that causes COVID-19. Here, we describe a virus-like nanoparticle candidate vaccine against SARS-CoV-2 produced by an E. coli expression system. The fusion protein of a truncated ORF2-encoded protein of aa 439~608 (p170) from hepatitis E virus CCJD-517 and the receptor-binding domain of the spike protein from SARS-CoV-2 were expressed, purified and characterized. The antigenicity and immunogenicity of p170-RBD were evaluated in vitro and in Kunming mice. Our investigation revealed that p170-RBD self-assembled into approximately 24 nm virus-like particles, which could bind to serum from vaccinated people (p < 0.001) and receptors on cells. Immunization with p170-RBD induced the titer of IgG antibody vaccine increased from 14 days post-immunization and was significantly enhanced after a booster immunization at 28 dpi, ultimately reaching a peak level on 42 dpi with a titer of 4.97 log10. Pseudovirus neutralization tests showed that the candidate vaccine induced a strong neutralizing antibody response in mice. In this research, we demonstrated that p170-RBD possesses strong antigenicity and immunogenicity and could be a potential candidate for use in future SARS-CoV-2 vaccine development.

Impact of the COVID-19 vaccine booster strategy on vaccine protection: a pilot study of a military hospital in Taiwan

  • Yu-Li Wang;Shu-Tsai Cheng;Ching-Fen Shen;Shu-Wei Huang;Chao-Min Cheng
    • Clinical and Experimental Vaccine Research
    • /
    • v.12 no.4
    • /
    • pp.337-345
    • /
    • 2023
  • Purpose: The global fight against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has led to widespread vaccination efforts, yet the optimal dosing schedule for SARS-CoV-2 vaccines remains a subject of ongoing research. This study aims to investigate the effectiveness of administering two booster doses as the third and fourth doses at different intervals to enhance vaccine protection. Materials and Methods: This study was conducted at a military regional hospital operated by the Ministry of National Defense in Taiwan. A cohort of vaccinated individuals was selected, and their vaccine potency was assessed at various time intervals following their initial vaccine administration. The study participants received booster doses as the third and fourth doses, with differing time intervals between them. The study monitored neutralizing antibody titers and other relevant parameters to assess vaccine efficacy. Results: Our findings revealed that the potency of the SARS-CoV-2 vaccine exhibited a significant decline 80 days after the initial vaccine administration. However, a longer interval of 175 days between booster injections resulted in significantly higher neutralizing antibody titers. The individuals who received the extended interval boosters exhibited a more robust immune response, suggesting that a vaccine schedule with a 175-day interval between injections may provide superior protection against SARS-CoV-2. Conclusion: This study underscores the importance of optimizing vaccine booster dosing schedules to maximize protection against SARS-CoV-2. The results indicate that a longer interval of 175 days between the third and fourth doses of the vaccine can significantly enhance the neutralizing antibody response, potentially offering improved protection against the virus. These findings have important implications for vaccine distribution and administration strategies in the ongoing battle against the SARS-CoV-2 pandemic. Further research and largescale trials are needed to confirm and extend these findings for broader public health implications.

Nucleic acid-based molecular diagnostic testing of SARS-CoV-2 using self-collected saliva specimens

  • Hwang, Eurim C.;Kim, Jeong Hee
    • International Journal of Oral Biology
    • /
    • v.46 no.1
    • /
    • pp.1-6
    • /
    • 2021
  • Since the outbreak of coronavirus disease 2019 (COVID-2019), the infection has spread worldwide due to the highly contagious nature of severe acute syndrome coronavirus (SARS-CoV-2). To manage SARS-CoV-2, the development of diagnostic assays that can quickly and accurately identify the disease in patients is necessary. Currently, nucleic acid-based testing and serology-based testing are two widely used approaches. Of these, nucleic acid-based testing with quantitative reverse transcription-PCR (RT-qPCR) using nasopharyngeal (NP) and/or oropharyngeal (OP) swabs is considered to be the gold standard. Recently, the use of saliva samples has been considered as an alternative method of sample collection. Compared to the NP and OP swab methods, saliva specimens have several advantages. Saliva specimens are easier to collect. Self-collection of saliva specimens can reduce the risk of infection to healthcare providers and reduce sample collection time and cost. Until recently, the sensitivity and accuracy of the data obtained using saliva specimens for SARS-CoV-2 detection was controversial. However, recent clinical research has found that sensitive and reliable data can be obtained from saliva specimens using RT-qPCR, with approximately 81% to 95% correspondence with the data obtained from NP and OP swabs. These data suggest that self-collected saliva is an alternative option for the diagnosis of COVID-19.

Clinical Presentation and Prognosis of SARS-CoV-2 Infection in Infants Aged ≤90 Days: Insights for Management During Outbreaks

  • Hye Jeong Moon;Mi Seon Han;Kyung Min Kim;Kyung Jin Oh;Ju Young Chang;Seong Yong Lee;Ji Eun Choi
    • Pediatric Infection and Vaccine
    • /
    • v.30 no.2
    • /
    • pp.84-90
    • /
    • 2023
  • Purpose: Infants aged ≤90 days with fever are susceptible to severe infections. This study aimed to analyze the clinical features of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in this particular age group. Methods: Infants aged ≤90 days who were diagnosed with coronavirus disease 2019 (COVID-19) and hospitalized between March 1, 2020, and May 1, 2022 were included. Medical records of patients were retrospectively reviewed. Results: A total of 105 infants with COVID-19 were included; 27 (25.7%) neonates aged <28 days, and 48 (45.7%) and 30 (28.6%) infants aged 28-59 days and 60-90 days, respectively. Five (4.7%) patients remained asymptomatic and 68 (62.8%) were febrile, with a median fever duration of 2 days. The most common symptoms were respiratory including cough (66.6%), nasal stuffiness (51.4%), and rhinorrhea (40.9%). Blood cultures were performed in 10 infants but no organisms were detected. Cultures of bag-collected urine specimens from 8 infants were grown, resulting in positive growth for 2 without pyuria. Nine (8.6%) infants were treated with empirical antibiotics for a median duration of 2.3 days (range, 1-7 days). All 105 infants showed improvement without any complications, and there were no fatal cases. Conclusions: In this study, most infants aged ≤90 days with COVID-19 presented with mild symptoms and none of those evaluated had documented bacterial co-infection. The favorable prognosis among young infants with SARS-CoV-2 may aid clinicians in tailoring their approach to evaluation and management during outbreaks.

Druggability for COVID-19: in silico discovery of potential drug compounds against nucleocapsid (N) protein of SARS-CoV-2

  • Ray, Manisha;Sarkar, Saurav;Rath, Surya Narayan
    • Genomics & Informatics
    • /
    • v.18 no.4
    • /
    • pp.43.1-43.13
    • /
    • 2020
  • The coronavirus disease 2019 is a contagious disease and had caused havoc throughout the world by creating widespread mortality and morbidity. The unavailability of vaccines and proper antiviral drugs encourages the researchers to identify potential antiviral drugs to be used against the virus. The presence of RNA binding domain in the nucleocapsid (N) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) could be a potential drug target, which serves multiple critical functions during the viral life cycle, especially the viral replication. Since vaccine development might take some time, the identification of a drug compound targeting viral replication might offer a solution for treatment. The study analyzed the phylogenetic relationship of N protein sequence divergence with other 49 coronavirus species and also identified the conserved regions according to protein families through conserved domain search. Good structural binding affinities of a few natural and/or synthetic phytocompounds or drugs against N protein were determined using the molecular docking approaches. The analyzed compounds presented the higher numbers of hydrogen bonds of selected chemicals supporting the drug-ability of these compounds. Among them, the established antiviral drug glycyrrhizic acid and the phytochemical theaflavin can be considered as possible drug compounds against target N protein of SARS-CoV-2 as they showed lower binding affinities. The findings of this study might lead to the development of a drug for the SARS-CoV-2 mediated disease and offer solution to treatment of SARS-CoV-2 infection.

Democratic Values, Collective Security, and Privacy: Taiwan People's Response to COVID-19

  • Yang, Wan-Ying;Tsai, Chia-hung
    • Asian Journal for Public Opinion Research
    • /
    • v.8 no.3
    • /
    • pp.222-245
    • /
    • 2020
  • In the pandemic crisis, many governments implemented harsh interventions that might contradict democratic values and civil liberties. In Taiwan, the debate over whether or not to reveal personal information of infected persons to limit the coronavirus's spread poses the democratic dilemma between public health and civil liberties. This study examines whether and explains how Taiwan's people respond to the choice between individual privacy and collective security. We used survey data gathered in May 2020 to show that, first, the democratic values did not deter the pursuit of collective safety at the cost of civil liberty; rather, people with higher social trust were more likely to give up their civil liberties in exchange for public safety. Second, people who support democratic values and pursue collective security tend to avoid violating privacy by opposing the release of personal information. This study proves that democratic values do not necessarily threaten collective safety and that the pursuit of common good can co-exist with personal privacy.

A study on how to generate notification messages using live and forecast information (실황 및 예측정보를 활용한 알림 메시지 생성방안 연구)

  • Lee, Jae-Young;Shin, Jiyoung;Park, Gi-Yeon;Kim, Junho
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.158-160
    • /
    • 2022
  • 최근의 자연 재난의 발생 빈도의 증가는 재난에 대한 정보전달의 중요성이 높아지는 만큼 전달 방법의 중요도도 높아지고 있다. 특히, 2020년의 코로나19(COVID-19)로 인하여 자연 재난에 더해 사회재난에 관한 관심도 증대하고 있으나, 재난정보의 빈도가 매우 높아져, 2000년대 통틀어서 제공된 재난 정보량보다 20년, 21년의 재난 정보량이 더 많아 보인다. 이러한 재난정보의 홍수는 반대급부로 정보의 피로도를 증가시켜 의도적 또는 비의도적 무시 경향을 유발할 수 있다. 이에 본 논문에서는 재난 위험지역을 기반으로 Segment를 생성하고 관리하며, Segment 단위로 재난 위험 메시지를 제공하는 Segment기반 긴급메시지전송 시스템을 연구한다. 목표시스템에서는 재난정보를 실황 정보와 1시간 예측정보를 비교, 위험지역 회피시나리오를 지능화 개선하여 모바일앱 이용자에게 제공함으로써 대피 이동관리와 행동 유도를 이끌어 이용자의 인명피해 저감과 재산손실 감소의 효과를 얻고자 개발하였다.

  • PDF

Features and Interpretation of Olfactory and Gustatory Disorders in the Corona Virus Disease-19 (코로나바이러스감염증-19에서 나타나는 후미각손상의 특성과 한의학적 분석)

  • Chi, Gyoo-yong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.34 no.6
    • /
    • pp.309-318
    • /
    • 2020
  • Besides respiratory infection, COVID-19 has many neurological symptoms not only loss of smell and taste but also fatigue and brain fog. But it is a challenge to treat the neurological symptoms especially of anosmia and ageusia. In order to search for the therapeutic methods, the geographical diversity and pathological mechanisms of the COVID-19 and two symptoms were investigated from the latest clinical studies. Because the environmental conditions of the monsoon climate zone of East Asia and the Mediterranean and Oceanic climate zone of Italy, Britain, United States and tropical Brazil are different, each of diverse etiology and internal milieu should be considered differently in the treatment. SARS-CoV-2 exhibits the dampness-like characteristics and the olfactory and gustatory disorders are particularly more common than other flu or cold. and it tends to show features of damaging the lung qi of olfaction and heart-spleen qi of gustation. The mechanisms of olfactory and gustatory loss are various according to precursory, inflammatory, non-inflammatory and sequelar forms, so the therapeutic method should be designed for each period and pathology. If the process of inflammation arises from nasal and respiratory, olfactory epithelium to the central nervous structure by way of blood brain barrier, the treatment should be corresponded with the stage and depth of pathogen place. And if the olfactory loss is asymptomatic or in the initial stage, it can be applied intranasal topical scent therapy to relieve temporary locking of qi movement, but maybe also used in parallel together with herbs of relieving dampness toxin latent in the lung parenchyma.

Improved marine predators algorithm for feature selection and SVM optimization

  • Jia, Heming;Sun, Kangjian;Li, Yao;Cao, Ning
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.4
    • /
    • pp.1128-1145
    • /
    • 2022
  • Owing to the rapid development of information science, data analysis based on machine learning has become an interdisciplinary and strategic area. Marine predators algorithm (MPA) is a novel metaheuristic algorithm inspired by the foraging strategies of marine organisms. Considering the randomness of these strategies, an improved algorithm called co-evolutionary cultural mechanism-based marine predators algorithm (CECMPA) is proposed. Through this mechanism, search agents in different spaces can share knowledge and experience to improve the performance of the native algorithm. More specifically, CECMPA has a higher probability of avoiding local optimum and can search the global optimum quickly. In this paper, it is the first to use CECMPA to perform feature subset selection and optimize hyperparameters in support vector machine (SVM) simultaneously. For performance evaluation the proposed method, it is tested on twelve datasets from the university of California Irvine (UCI) repository. Moreover, the coronavirus disease 2019 (COVID-19) can be a real-world application and is spreading in many countries. CECMPA is also applied to a COVID-19 dataset. The experimental results and statistical analysis demonstrate that CECMPA is superior to other compared methods in the literature in terms of several evaluation metrics. The proposed method has strong competitive abilities and promising prospects.