• Title/Summary/Keyword: Co$_2$ enrichment

Search Result 195, Processing Time 0.022 seconds

Effect of Phosphorus Stress on Photosynthesis and Nitrogen Fixation of Soybean Plant under $CO_2$ Enrichment (대기 $CO_2$ 상승시 인산공급이 식물체의 광합성 및 질소고정에 미치는 영향)

  • Sa, Tong-Min
    • Applied Biological Chemistry
    • /
    • v.40 no.2
    • /
    • pp.134-138
    • /
    • 1997
  • The objective of this study was to examine the effect of phosphorus deficiency on nitrogen fixation and photosynthesis of nitrogen fixing soybean plant under $CO_2$ enrichment condition. The soybean plants(Glycine max [L.] Merr.) inoculated with Bradyrhizobium japonicum MN 110 were grown with P-stressed(0.05 mM-P) and control(1 mM-P) treatment under control$(400\;{\mu}l/L\;CO_2)$ and enrichment$(800\;{\mu}l/L\;CO_2)$ enviromental condition in the phytotron equipped with high density lamp$(1000\;{\mu}Em^{-2}S^{-1})$ and $28/22^{\circ}C$ temperature cycle for 35 days after transplanting(DAT). At 35 DAT, phosphorus deficiency decreased total dry mass by 64% in $CO_2$ enrichment condition, and 51% in control $CO_2$ condition. Total leaf area was reduced significantly by phosphorus deficiency in control and enriched $CO_2$ condition but specific leaf weight was increased by P deficiency. Phosphorus deficiency significantly reduced photosynthetic rate(carbon exchange rate) and internal $CO_2$ concentration in leaf in both $CO_2$ treatments, but the degree of stress was more severe under $CO_2$ enrichment condition than under control $CO_2$ environmental condition. In phosphorus sufficient plants, $CO_2$ enrichment increased nodule fresh weight and total nitrogenase activity(acetylene reduction) of nodule by 30% and 41% respectively, but specific nitrogenase activity of nodule and nodule fresh weight was not affected by $CO_2$ enrichment in phosphorus deficient plant at 35 DAT. Total nitrogen concentrations in stem, root and nodule tissue were significantly higher in phosphorus sufficient plant grown under $CO_2$ enrichment, but nitrogen concentration in leaf was reduced by 30% under $CO_2$ enrichment. These results indicate that increasing $CO_2$ concentration does not affect plant growth under phosphorus deficient condition and phosphorus stress might inhibit carbohydrate utilization in whole plant and that $CO_2$ enrichment could not increase nodule formation and functioning under phosphorus deficient conditions and phosphorus has more important roles in nodule growth and functioning under $CO_2$ enrichment environments than under ambient condition.

  • PDF

Effects of $\textrm{CO}_2$ Enrichment During Seedling Stage on the Effectiveness of $\textrm{CO}_2$ Enrichment after Transplanting in Leafy Vegetables (엽채류 육묘시 $\textrm{CO}_2$ 시용이 정식 후 $\textrm{CO}_2$ 시용 효과에 미치는 영향)

  • 김일섭;신석범;전익조
    • Journal of Bio-Environment Control
    • /
    • v.11 no.1
    • /
    • pp.35-39
    • /
    • 2002
  • This study was conducted to investigate the effect of early $CO_2$ enrichment during seedling stage on long-term $CO_2$ enrichment after transplanting in the culture of pat-choi (Brassica campesris L), spinach (Spinacia oeracea L.), and leaf lettuce (Lactuca saliva L). During seedling stage, $CO_2$enrichment had significantly higher fresh and dry weight and leaf area of the top parts (above ground) of all three plant species than the control (no $CO_2$ enrichment). About 53%, 70% , and 40% increase in fresh weight of the top parts of pak-choi, spinach, and leaf lettuce were observed, respectively. Also, in seedling stage, dry weights of roots of spinach and leaf lettuce were significantly increased by early $CO_2$ enrichment. Relative fresh weight increment, compared with fresh weight of the control, in the top parts of roll three plants showed the highest values in 10 days after $CO_2$ enrichment treatment. In the long-term $CO_2$ enrichment experiment, early $CO_2$ enrichmented plants had 20% greater leaf area than the control in all three leafy vegetables. Fresh and dry weights of top parts of early $CO_2$-treated plants were also increased from 10 to 20%, as compared with the control plants. However, these increasement rates in the long-term $CO_2$ enrichment were lower than those seedling stage, which had 30-60% increment-rates. After transplanting, photosynthetic rate of each leafy vegetable in the control treatment slowly decreased, but those rates of early $CO_2$ enriched plants rapidly decreased.

Effect of $Co_2$ Enrichment of Semihardwood Lagerstroemia indica L. Cuttings in Enclosed Propagating Frame (이산화탄소 시용에 의한 배롱나무 삽목의 발근 촉진 효과)

  • 안영희
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.20 no.3
    • /
    • pp.57-63
    • /
    • 1992
  • The present investigation was undertaken to determine if CO2 enrichment promoted rooting and subsequent growth of Lagerstroemia indica L. cuttings. Cutting were taken from the one-year-old semihardwood twigs, and rooted in enclosed propagation frame with enriched CO2 levels (500-2000ppm) regulated by a gas monitor. The base of each cutting was dippid from 500 to 4000ppm naphthalenacetic acid. Roothing was determined after 3 months. CO2 enrichment during roothing increased the rooting percentage and number of roots per cutting, but nontreated cuttings rooted in low percentages producing one or two roots. The length of new shoots and dry weight of whole cuttings in CO2 enrichment were significantly greater than those of the atmospheric controls. The organic and inorganic compounds concentraion were measured as an indication of nutritional state in whole cuttings. As a result of CO2 enrichment, carbohydrate, protein and inorganic compounds(total nitrogen, P2O5, K2O, CaO, MgO) concentration were higher than controls.

  • PDF

Phosphorus Accumulation and Utilization Efficiency in Soybean Plant under Atmospheric CO2 Enrichment

  • Sa, Tongmin;Kim, Jong-Soo
    • Journal of Applied Biological Chemistry
    • /
    • v.44 no.1
    • /
    • pp.16-19
    • /
    • 2001
  • Soybean plants(Glycine max [L.] merr.) inoculated with Bradyrhizobium japonicum MN110 were grown in growth chambers under 400 or $800{\mu}l{\cdot}l^{-1}$ atmospheric $CO_2$ and harvested at 25, 28, 32, and 35 DAT to examine the effect of $CO_2$ enrichment on phosphorus accumulation, uptake, and utilization efficiency during vegetative growth. Phosphorus concentration in leaf was lower in high $CO_2$ plant by 47% at 25 DAT and 34% at 35 DAT than those in the control plant but phosphorus concentrations in stem, root and nodule were not affected by $CO_2$ enrichment. Total phosphorus accumulation increased 3.9-fold in high $CO_2$ plant and 3.2-fold in the control plant between 25 and 35 DAT. Elevated $CO_2$ caused a decrease in the whole plant phosphorus concentration by 35%, which was due almost entirely to a decrease in the phosphorus concentration of leaves. $CO_2$ enrichment increased phosphorus utilization efficiency in the whole plant by 70% during the experimental period. Plants exposed to high $CO_2$ had larger root systems than under ambient $CO_2$, but high $CO_2$ plants had lower P-uptake efficiency. Averaged over four harvests, plants at high $CO_2$ had 38% larger root mass that was more than offset the 20% lower efficiency of P-uptake and accounted for increased phosphorus accumulation by high $CO_2$ plant. These results suggest that the reduced phosphorus concentration in soybean plant under $CO_2$ enrichment may be an acclimation response to high $CO_2$ concentration or enhanced starch accumulation, resulting in the plants to have a lower phosphorus requirement on a unit dry weight basis or a high phosphorus utilization efficiency under these conditions.

  • PDF

Effect of CO$_{2}$Enrichment on Growth of two Poplar Clones, I-214 (Populus euramericana) and Peace (P. koreana $\times$ P. trichocarpa) (환경조건에 대해 기공의 반응이 상이한 두 종의 포플라 생장에 미치는 고농도 CO$_{2}$의 영향)

  • Park, shin-Young;Akio Furukawa;Tsumugu Totsuka
    • The Korean Journal of Ecology
    • /
    • v.18 no.2
    • /
    • pp.255-263
    • /
    • 1995
  • Two poplar clones, I-214 (Populus euramericana) and Peace (P. Koreana × P. trichocarpa), were grown for 21 days in growth chambers at different CO₂concentrations (350, 700 and 2,000 μL·L-1). I-214 has stomata responding to environmental conditions in normal ways and Peace has unresponsive stomata to environmental factors including light, ABA, water stress and CO₂. In both plants, elevated CO₂ stmulated the growth of plant parts, especially leaf dry weight. And a CO₂ enrichment of 700 μL·L-1 CO₂ caused increment of net assimilation rate (NAR). The growth responses of these plants to CO₂ enrichment were different especially at high CO₂ condition (2,000 μL·L-1 CO₂). The total dry weight in Peace increased up to 2,000 μL·L-1 CO₂ but not in I-214. A CO₂ enrichment of 2,000 2,000 μL·L-1 CO₂ had little effect on NAR of I-214 but enhanced NAR of Peace. Although it is uncertain whether the different responses to CO₂ enrichment between I-214 and Peace resulted from the different properties of stomatal responses to long-term CO₂ treatment, the decrease in NAR is probably due in part to CO₂-induced stomatal closure in I-214 but not in Peace.

  • PDF

The Effects of CO2 Enrichment on the Radial Growth of Pinus densiflora

  • En-Bi CHOI;Hyemin LIM;Jeong-Wook SEO
    • Journal of the Korean Wood Science and Technology
    • /
    • v.52 no.3
    • /
    • pp.289-299
    • /
    • 2024
  • The current study aimed to investigate the impact of CO2 enrichment on the width of annual tree rings, earlywood and latewood, and the area of annual growth of Pinus densiflora Siebold & Zucc. grown in open-top chamber (OTC). To this end, two CO2 enrichment cases were considered, namely 1.4 × increment (560 ppm in OTC-II) and 1.8 × (720 ppm in OTC-III) were compared with the current atmosphere (400 ppm in OTC-I). The CO2 enrichment conditions for a period of 12 years (2010-2021) were considered, and all measurements were done through image analysis. The study showed that the increment in CO2 concentrations positively affected the tree growth. The measurement data from the trees in OTC-III were considerably higher than those from OTC-I, whereas those from OTC-II were slightly higher than those from OTC-I. Decreasing patterns of the measured widths and area in 6-7 years after the beginning of CO2 enrichment was found for all the OTCs. These patterns were possibly due to changes in the physiological features, such as aging. The findings of the present study can have potential uses as fundamental data for forest management considering CO2 concentrations.

Effect of Oxygen Enrichment in a Swirling Diffusion Gas Burner (선회 확산버너에서 산소부화가 연소장에 미치는 영향)

  • Lee, Yong-Hoo;Lee, Jin-Seok;Lee, Woo-Seob;Lee, Do-Hyung
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.2
    • /
    • pp.34-41
    • /
    • 2002
  • To investigate the combustion characteristics of a swirling diffusion gas burner with oxygen enrichment, mean temperature, CO, $CO_2$, and HC concentrations were measured at various oxygen enrichment conditions. According to the results, the flame temperature increased and the region of high temperature was expanded with increasing oxygen concentration. The $CO_2$ concentrations increased, while the CO concentrations decreased in proportion to the increase of oxygen concentration. On the other hand, the HC concentrations were decreased and this tendency was very strong at the downstream of the combustor.

  • PDF

Natural Background and Enrichment Characteristics of the Stream Sediments from the Hamyang-Sancheong Area (함양-산청지역 하상퇴적물의 자연배경치 및 부화특성)

  • Park, Young-Seog;Park, Dae-Woo;Kim, Jong-Kyun
    • Economic and Environmental Geology
    • /
    • v.42 no.3
    • /
    • pp.195-206
    • /
    • 2009
  • We investigated natural background and enrichment characteristics and predicted geochemical disaster for stream sediments in the Hamyang-Sancheong area. Stream sediments samples were collected 95 ea in study area. The stream sediments were well known that had not possibility of contamination effect and represented drainage basins. We got the major and hazardous elements concentrations by XRF, ICP-AES and NAA analysis methods. Acid decomposition for the ICP-AES has been used $HClO_4$ and HF with $200^{\circ}C$ heating at 1st and after that $HClO_4$ HF and HCl with $200^{\circ}C$ heating at 2nd stage. We could know the characteristics that concentration of Cu and Co decreased when concentration of $SiO_2$ increased in correlation analysis. The enrichment factor of the stream sediments was below 2 in study area. This result indicated that study area belonged to moderate enrichment. The stream sediments of Hamyang area were enriched in order of Pb>Th>Cr>V>Co>Cu and those of Sancheong area were enriched in order of Pb>Th>Cr>Co>V>Cu. The enrichment factor(E.F.) of the Pb, Cr, Co and V was similar between Hamyang and Sancheong area. The enrichment factor of the Th was higher in Hamyang area and that of the Cu was higher in Sancheong area. The enrichment factor of the Pb was highly enriched in all study area than earth crust mean. But we could know that study area was not exposed to the pollution of the Pb through the tolerable level.

Identification of key genes and functional enrichment analysis of liver fibrosis in nonalcoholic fatty liver disease through weighted gene co-expression network analysis

  • Yue Hu;Jun Zhou
    • Genomics & Informatics
    • /
    • v.21 no.4
    • /
    • pp.45.1-45.11
    • /
    • 2023
  • Nonalcoholic fatty liver disease (NAFLD) is a common type of chronic liver disease, with severity levels ranging from nonalcoholic fatty liver to nonalcoholic steatohepatitis (NASH). The extent of liver fibrosis indicates the severity of NASH and the risk of liver cancer. However, the mechanism underlying NASH development, which is important for early screening and intervention, remains unclear. Weighted gene co-expression network analysis (WGCNA) is a useful method for identifying hub genes and screening specific targets for diseases. In this study, we utilized an mRNA dataset of the liver tissues of patients with NASH and conducted WGCNA for various stages of liver fibrosis. Subsequently, we employed two additional mRNA datasets for validation purposes. Gene set enrichment analysis (GSEA) was conducted to analyze gene function enrichment. Through WGCNA and subsequent analyses, complemented by validation using two additional datasets, we identified five genes (BICC1, C7, EFEMP1, LUM, and STMN2) as hub genes. GSEA analysis indicated that gene sets associated with liver metabolism and cholesterol homeostasis were uniformly downregulated. BICC1, C7, EFEMP1, LUM, and STMN2 were identified as hub genes of NASH, and were all related to liver metabolism, NAFLD, NASH, and related diseases. These hub genes might serve as potential targets for the early screening and treatment of NASH.

Optimal CO2 Enrichment Considering Emission from Soil for Cucumber Greenhouses

  • Lee, DongHoon;Lee, KyouSeung;Cho, Yong Jin;Choi, Jong-Myoung;Kim, Hak-Jin;Chung, Sun-Ok
    • Horticultural Science & Technology
    • /
    • v.30 no.5
    • /
    • pp.501-508
    • /
    • 2012
  • Reducing carbon dioxide ($CO_2$) exhaust has become a major issue for society in the last few years, especially since the initial release of the Kyoto Protocol in 1997 that strictly limited the emissions of greenhouse gas for each country. One of the primary sectors affecting the levels of atmospheric greenhouse gases is agriculture where $CO_2$ is not only consumed by plants but also produced from various types of soil and agricultural ecosystems including greenhouses. In greenhouse cultivation, $CO_2$ concentration plays an essential role in the photosynthesis process of crops. Optimum control of greenhouse $CO_2$ enrichment based on accurate monitoring of the added $CO_2$ can improve profitability through efficient crop production and reduce environmental impact, compared to traditional management practices. In this study, a sensor-based control system that could estimate the required $CO_2$ concentration considering emission from soil for cucumber greenhouses was developed and evaluated. The relative profitability index (RPI) was defined by the ratio of growth rate to supplied $CO_2$. RPI for a greenhouse controlled at lower set point of $CO_2$ concentration (500 ${\mu}mol{\cdot}mol^{-1}$) was greater than that of greenhouse at higher set point (800 ${\mu}mol{\cdot}mol^{-1}$). Evaluation tests to optimize $CO_2$ enrichment concluded that the developed control system would be applicable not only to minimize over-exhaust of $CO_2$ but also to maintain the crop profitability.