• Title/Summary/Keyword: CmACS-7

Search Result 2, Processing Time 0.023 seconds

Improving CO2 Adsorption Performance of Activated Carbons Treated by Plasma Reaction with Tetrafluoromethane (사불화탄소 플라즈마 반응에 의해 처리된 활성탄소의 CO2 흡착 성능 향상)

  • Chung Gi Min;Chaehun Lim;Seo Gyeong Jeong;Seongjae Myeong;Young-Seak Lee
    • Applied Chemistry for Engineering
    • /
    • v.34 no.2
    • /
    • pp.170-174
    • /
    • 2023
  • CO2 is known as one of the causes of global warming, and various studies are being conducted to capture it. In this study, a tetrafluoromethane (CF4) plasma reaction was performed to improve the CO2 adsorption of activated carbons (ACs) through changes in surface characteristics, and the adsorption characteristics according to the reaction time were considered. After the reaction, the micropore volume increased up to 1.03 cm3/g. In addition, as the reaction time increased, the fluorine content on the surface increased to 0.88%. It was possible to simultaneously control the pore properties and surface functional groups of the ACs through this experiment. Also, the CO2 uptake of surface-treated ACs improved up to 7.44% compared to untreated ACs, showing the best performance at 3.90 mmol/g when the reaction time was 60 s. This is due to the synergy effect of the fluorine functional groups introduced on the surface of the ACs and the increased micropore volume caused by the etching effect. It was found that the micropore volume had a greater effect on CO2 adsorption in the region where the CO2 uptake was less than 3.67 mmol/g, while the added fluorine content had a greater effect in the region above that.

Marker-Assisted Selection for Monoecy in Chamoe (Cucumis melo L.) (성발현 연관 분자마커를 이용한 단성화 참외 선발)

  • Bang, Sun-Woong;Song, Kihwan;Sim, Sung Chur;Chung, Sang Min
    • Horticultural Science & Technology
    • /
    • v.34 no.1
    • /
    • pp.134-141
    • /
    • 2016
  • The DNA marker T1ex, originally developed from melon (Cucumis melo L.) for monoecy, was employed in chamoe, which is referred to as oriental melon. This marker shows size variations in monoecious melon. However, in chamoe, no such detrimental size variation was found in monoecious chamoe, and 99% association between flower phenotypes and genotypes of the T1ex marker was observed in 106 lines of chamoe. To evaluate the efficacy of the T1ex marker for marker-assisted selection (MAS), a total of 240 plants of chamoe breeding lines were screened using the T1ex marker. Among these, 98 varieties were selected. Although the T1ex marker might not be useful for MAS in melon, we found 100% concordance between genotypes and phenotypes for sex expression in chamoe. These results suggest that the T1ex marker will be a useful resource for MAS for monoecy in chamoe.