• Title/Summary/Keyword: Clutter Environment

Search Result 101, Processing Time 0.026 seconds

Adaptive Gaussian Model Based Ground Clutter Mitigation Method for Wind Profiler

  • Lim, Sanghun;Allabakash, Shaik;Jang, Bong-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.12
    • /
    • pp.1396-1403
    • /
    • 2019
  • The radar wind profiler data contaminates with various non-atmospheric components that produce errors in moments and wind velocity estimations. This study implemented an adaptive Gaussian model to detect and remove the clutter from the radar return. This model includes DC filtering, ground clutter recognition, Gaussian fitting, and cost function to mitigate the clutter component. The adaptive model tested for the various types of clutter components and found that it is effective in clutter removal process. It is also applied for the both time series and spectrum datasets. The moments estimated using this method are compared with those derived using conventional DC-filtering clutter removal method. The comparisons show that the proposed method effectively removes the clutter and produce reliable moments.

Hough Transform Clutter Reduction Algorithm for Piecewise Linear Path Active Sonar Target Detection and Tracking Improvement (구간선형기동 능동소나표적 탐지 추적 성능향상을 위한 허프변환 클러터제거 알고리즘)

  • Kim, Seong-Weon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.4
    • /
    • pp.354-360
    • /
    • 2013
  • In this paper, it is discussed that the detection and tracking performance of the piecewise linear path underwater target is improved using clutter reduction algorithm in heavy clutter density environment. Through clutter reduction algorithm using Hough Transform, measurements which represent clutter features are removed and the performance of target tracking on the remaining measurements is demonstrated applying CMKF-L(Converted Measurement Kalman Filter with Linearization) as tracking filter. Algorithm performance test is conducted using simulation data and real sea-trial data and by applying the proposed algorithm in heavy clutter density environment, it is confirmed that the target is tracked consistently and stably with clutter rejected measurements.

UWB Automobile Short Range Radar Receivers Performance In a Log-Normal Clutter Background (Log-Normal Clutter 환경에서 차량용 UWB 단거리 레이더 수신기의 성능분석)

  • Kumaravelu, Nandeeshkumar;Ko, Seok-Jun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.9
    • /
    • pp.59-64
    • /
    • 2011
  • Ultra wideband radars attract considerable attention as a short range automotive radar because of its high range resolution. Radar signal reflected from a target often contains unwanted echoes called as clutter, so the detection of target is difficult due to clutter echoes. Therefore, it is important to investigate the radar detector for better detecting from the reflected signals. In this paper, the optimal detector is obtained for various mean and variance value in log-normal clutter environment. The types of non-coherent detectors used are square law detector, linear detector, and logarithmic detector. The performances of detectors are compared in log normal clutter environment and the suitable detector is determined for automotive short range radar application.

Implementation of Radar Environment Classifier for Adaptive Target Detection (적응표적 탐지용 레이다 환경 분류기 구현)

  • Choi, Beyimg-Gwan;Choi, In-Sik;Kim, Whan-Woo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.5 s.305
    • /
    • pp.157-164
    • /
    • 2005
  • The conventional adaptive detectors can not maintain sufficient detection performance at the presence of non-stationary clutter with unknown characteristics. This is caused by the lack of a priori information about clutter parameters changing over radar coordinates. To solve this problem, it is necessary to use clutter classifiers which have functions, such as the selection of the applied algorithm and its parameters extraction according to clutter conditions. In this paper, we describe the implementation of a clutter environment classifier for adaptive processing. In the environment classifier implemented on Visual C++, the extraction of the parameters and selection of processing algorithm for the adaptive processing unit are possible, and the result of algorithms can be verified at each stage.

A Study on the Performance of a Radar Clutter Suppression Algorithm Based on the Adaptive Clutter Prewhitening Filter and Droppler Filter Bank (Adaptive Clutter Prewhitening Filter와 Doppler Filter Bank를 이용한 레이다 Clutter 제거 알고리듬의 성능에 관한 연구)

  • Kim, Yong-Ho;Lee, Hwang-Soo;Un, Chong-Kwan;Lee, Won-Kil
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.6
    • /
    • pp.140-146
    • /
    • 1989
  • In many situations, radar targets are embedded in a clutter environment and clutter rejection is required. The clutter is unwanted radar echoes and may arise owing to reflections from ground and weather disturbances and statistical properties of the clutter vary with range and azimuth as well as time. That is, adaptive signal processing is required. In this paper, a clutter suppression algorithm based on the clutter whitening filter (WF) and doppler filter bank(DFB) is described which provides improved performance compared with conventional nonadaptive clutter suppression algorithm that is the cascaded moving target indicator (MTI) and (DFB). The clutter whitening filter algorithm is based on the Burg's maximum entropy method.

  • PDF

The Efficient Clutter Simulation Method for Airborne Radars (항공기용 레이다를 위한 효율적인 클러터 모의 방법)

  • Lee, Jonggil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.9
    • /
    • pp.1123-1130
    • /
    • 2019
  • Simulation of the strong clutter occurring from the airborne radar is essential in the efficient development and performance evaluation of the aircraft radar system. If the efficient simulation of the clutter can be successful, algorithms can be proved and analyzed and also the performance evaluation is possible in the laboratory environment. Therefore, development and implementation of the airborne radar system can be achieved very economically in the effective way. However, the clutter simulation procedure is very difficult and tedious since the clutter environment changes in numerous ways as it depends on the flight path, direction of antenna beam, reflectivity of the surface, etc.. Thus, in this paper, the general Doppler spectrum model is suggested for efficient simulation of the various clutter environment. Also, it is shown that the various type of clutter in time domain can be generated easily by changing and adjustment of parameters in the general Doppler spectrum model.

Target Detection Performance in a Clutter Environment Based on the Generalized Likelihood Ratio Test (클러터 환경에서의 GLRT 기반 표적 탐지성능)

  • Suh, Jin-Bae;Chun, Joo-Hwan;Jung, Ji-Hyun;Kim, Jin-Uk
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.5
    • /
    • pp.365-372
    • /
    • 2019
  • We propose a method to estimate unknown parameters(e.g., target amplitude and clutter parameters) in the generalized likelihood ratio test(GLRT) using maximum likelihood estimation and the Newton-Raphson method. When detecting targets in a clutter environ- ment, it is important to establish a modular model of clutter similar to the actual environment. These correlated clutter models can be generated using spherically invariant random vectors. We obtain the GLRT of the generated clutter model and check its detection probability using estimated parameters.

Efficient Detection of Small Unmanned Aerial Vehicles in Cluttered Environment (클러터 환경을 고려한 효과적 소형 무인기 탐지에 관한 연구)

  • Choi, Jae-Ho;Kang, Ki-Bong;Sun, Sun-Gu;Lee, Jung-Soo;Cho, Byung-Lae;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.5
    • /
    • pp.389-398
    • /
    • 2019
  • In this paper, we propose a method to detect small unmanned aerial vehicles(UAVs) flying in a real-world environment. Small UAV signals are frequently obscured by clutter signals because UAVs usually fly at low altitudes over urban or mountainous terrain. Therefore, to obtain a desirable detection performance, clutter signals must be considered in addition to noise, and thus, a performance analysis of each clutter removal technique is required. The proposed detection process uses clutter removal and pulse integration methods to suppress clutter and noise signals, and then detects small UAVs by utilizing a constant false alarm rate detector. After applying three clutter removal techniques, we analyzed the performance of each technique in detecting small UAVs. Based on experimental data acquired in a real-world outdoor environment, we found it was possible to derive a clutter removal method suitable for the detection of small UAVs.

Design and Fabrication of a W-band FMCW Radar for the Metal Target Detection Under the Ground Clutter Environment (지면 클러터 환경에서 금속표적감지를 위한 W-대역 FMCW 레이더의 설계 및 제작)

  • Park Jung-Dong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.3 s.18
    • /
    • pp.93-100
    • /
    • 2004
  • In this paper, we describe the design, fabrication, and test results of a W-band FMCW radar for the metal target detection under the ground clutter environment. In order to detect metal targets on the ground, we used a single cassegrain antenna with the beamwidth of $1.45^{\circ}$ which forms pencil-beam footprint on the ground. A log envelope detector was applied to improve radar performance in the severe ground clutter known as Weibull and log normal clutter. The designed FMCW radar can acquire altitude information from the ground clutter with $\sigma_0=-23dB$ at the height of 160m. The fabricated W-band FMCW radar transmits 11 dBm power and the dynamic range of the receiver is from -106dBm to -30dBm. The performances of the fabricated sensors were tested out in the fields and detected a car target of 200m apart on the grass.

IRF Analysis Considering Clutter Background for SAR Image Qualification

  • Jung, Chul-H.;Oh, Tae-B.;Song, Sun-H.;Kwag, Young-K.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.1
    • /
    • pp.83-90
    • /
    • 2009
  • A new IRF (Impulse Response Function) analysis technique in high resolution SAR image is presented by taking into account the real clutter environment. In order to investigate the realistic effect of clutter background on the impulse response function of SAR image, an ideally generated impulse response function is superimposed with a large number of background clutter data which are extracted from the various regions of an actual SAR image. As a performance measure, PSLR (Peak Sidelobe Ratio) of the clutter-contained IRF is presented in the various groups of clutter background, and finally the results are compared with the stochastic model.