• 제목/요약/키워드: Clutch System

검색결과 196건 처리시간 0.027초

전기 유변성 클러치를 이용한 회전관성체의 위치제어 (Angular Position Control of a Rotor with Electro-Rheological Clutch)

  • 고봉춘;심현해;김창호;김권희
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1998년도 제28회 추계학술대회
    • /
    • pp.203-211
    • /
    • 1998
  • ER clutch is a device using electro-rheological fluid which is one of so called intelligent materials. Power transmission behavior of an ER clutch can be controlled by electrical field applied tb the fluid. In this work, a new type of servomechanism is developed with two ER clutchs, driven by two electrical motors rotating in reverse directions. The concentric cylinder type ER clutch is operated by PID control. The system shows good angular position control characteristics with respect to sinusoidal and square inputs.

  • PDF

지게차 자동변속기의 클러치 직접 제어 유압 시스템 모델링 및 해석 (The Hydraulic System Modeling and Analysis of the Clutch Direct Control of an Automatic Transmission for a Forklift Truck)

  • 오주영;이근호;송창섭
    • 한국정밀공학회지
    • /
    • 제26권1호
    • /
    • pp.112-119
    • /
    • 2009
  • An automatic transmission of construction equipment is controlled by hydraulic and electronic system for doing in various functions like as shifting and operation. The shifting is operated by the engaged and disengaged clutch motion from hydraulic power. On the shifting process, suitable pressure control to the clutch is required for smooth shifting. Hydraulic control system in the automatic transmission is divided by the pilot control type and the direct control type greatly. The direct control type has an advantage than the pilot control type. Because the structure is simple, the design and the manufacture are having less troubles and the system can be maximized precision pressure control. However, the excellent performance proportional control valve should be used to achieve proper control-ability. In this study, the dynamic analysis model composing the automatic transmission and hydraulic system for forklift truck is presented to simulate the characteristics of hydraulic system about the direct control type. That model is verified the validity compared the results of the testing examination. Parameters of input signal are analyzed to reduce the output torque according to input control signal is affected in shifting characteristic.

클러치 마스터 실린더의 성능최적화에 관한 연구 (Study on Performance Optimization of Clutch Master Cylinder)

  • 이춘곤;이창헌;변재혁;이재열;노승훈;이종형
    • 한국산업융합학회 논문집
    • /
    • 제11권4호
    • /
    • pp.165-170
    • /
    • 2008
  • The demand for the lighter parts compels new composite materials composed of nylon66 and glass fiber to be used for the clutch control hydraulic system to achieve the low cost, light weight and the simple production process. In this paper the feasibility of using those composite materials for the clutch system has been investigated. And the efforts have been concentrated to enhance the durability and the credibility of the system. The procedure has been developed to design the clutch system to satisfy the categories mentioned above and to analyze the durability of the system and to setup a simulation program for the realistic driving situations.

  • PDF

냉각팬 전자제어를 통한 시내버스의 연비 개선 (The Effect of Cooling Fan Control on Fuel Economy of City Bus)

  • 김기복;박진일;이종화;박경석
    • 한국자동차공학회논문집
    • /
    • 제21권6호
    • /
    • pp.1-7
    • /
    • 2013
  • This paper focuses on cooling fan control by using a magnetic clutch type for the improvement of fuel economy on a heavy city bus. In general, Heavy duty vehicles use viscous clutch type cooling fan which has some disadvantages, such as slow response, wide temperature variation of engine coolant water. But a magnetic clutch type cooling fan can be controlled electronically so the engine coolant temperature can be precisely controllable and this effects could be used to reduce fuel consumption. A control system for applying the magnetic clutch type cooling fan was developed in this study and applied to the real field test and chassis dynamometer test. The result showed well controlled coolant temperature and enhancement of fuel economy.

전기유변성 클러치의 동력전달 메커니즘 제3보 : ER 클러치 성능에 관한 실험적 고찰 (Power Transmission Mechanism of Electrorheological Clutch Part III: Experimental considerations on performance of ER clutch)

  • 이규한;심현해;김창호;임윤철
    • Tribology and Lubricants
    • /
    • 제13권4호
    • /
    • pp.1-9
    • /
    • 1997
  • ER clutch is a device using ER fluid, so called "intelligent material" and is a power transmission system controlled with electric field strength. In this paper(Part III), the behavior of ER clutch under proper conditions was investigated experimentally and compared to theoretical analyses developed from Part I, II. Considering the optimum design concept proposed from Part I, the concentric cylinder type of ER clutch was designed and the experimental apparatus for the performance test was constructed. The comparisons made indicated that the power transmission model of ER clutch and the temperature rise model of ER fluid developed from Part I, II were acceptable for engineering design calculations.culations.

DEVELOPMENT OF AUTOMATIC CLUTCH ACTUATOR FOR AUTOMATED MANUAL TRANSMISSIONS

  • MOON S. E.;KIM H. S.;HWANG S. H.
    • International Journal of Automotive Technology
    • /
    • 제6권5호
    • /
    • pp.461-466
    • /
    • 2005
  • With the growing traffic density and increasing comfort requirements, the automation of the drive train has gained importance in vehicles. The automatic clutch actuation relieves a driver especially in urban and stop-and-go traffic environments. In this paper, an electro-mechanical actuator for clutch-by-wire (CBW) system is implemented as the first stage for the development of automated manual transmissions. The prototype of the automatic clutch actuator is designed systematically, which is composed of the electric motor, worm and worm wheel, and crank mechanism. A test rig is developed to perform the basic function test for the automatic clutch actuation. The developed prototype is validated by the experimental results performed on the test rig.

전기유변성 클러치의 동력전달 메커니즘 제1보: 동력전달 메커니즘의 해석적 전개 (Power Transmission Mechanism of Electrorheological Clutch Part I: Analytical development of power transmission mechanism)

  • 이규한;심현해;김창호;임윤철
    • Tribology and Lubricants
    • /
    • 제13권2호
    • /
    • pp.27-38
    • /
    • 1997
  • ER clutch is a device using ER fluid, so called "intelligent material" and is a power transmission system controlled with electric field strength. This device responses very rapidly when controlled by rapid and continuous electrical signal and can form a servosystem. Wear, noise and vibration during operation is very low level. This study was undertaken to investigate substitutive possibilities of this ER clutch for existing power transmission mechanism. An analytic relationships using rheological model (so called, 'Bingham plastic model') of ER fluid were developed, and operation constraints and optimum design concepts were constructed. With this relationships, typical responses of ER clutch and effects of changing geometric, kinetic parameters of ER clutch and ER fluid properties were described. In conclusion, compared with existing mechanisms, an excellent performance of ER clutch was confirmed.confirmed.

마찰을 고려한 차량 동력전달계의 Stick-Slip 현상에 관한 연구 (A Study on the Stick-Slip Phenomenon of the Driveline System of a Vehicle in Consideration of Friction)

  • 윤영진;홍동표;정태진
    • 한국자동차공학회논문집
    • /
    • 제3권4호
    • /
    • pp.19-29
    • /
    • 1995
  • This paper discusses the stick-slip phenomenon of the driveline system of a vehicle in consideration of friction. Friction is operated on the between of flywheel and clutch disk. The expressions for obtaining the results have been derived from the equation of motion of a three degree of freedom frictional torsion vibration system which is made up driving part(engine, flywheel), driven part(clutch, transmission) and dynamic load part(vehicle body) by applying forth-order Rungekutta method. It was found that the great affect parameters of the stick-slip or stick motion were surface pressure force between flywheel and clutch disk, time decay parameter of surface pressure force and 1st torsional spring constant of clutch disk when driveline system had been affected by friction force. The results of this study can be used as basic design data of the clutch system for the ride quality improvement of a car.

  • PDF

Hydraulic Clutch System의 Mission Profile 및 내구시험모수 결정에 관한 연구 (A Study on Mission Profile and Determination of Durability Test Parameters in the Hydraulic Clutch System)

  • 이상천;허만대;이춘곤;김재영;강지우;이홍범;소윤섭;이종형;민병길;이재열
    • 대한기계학회논문집A
    • /
    • 제33권5호
    • /
    • pp.521-528
    • /
    • 2009
  • One of reliability measurements of vehicle is estimated by driving mileage but the reliability of component, such as an hydraulic clutch system, is defined from the number of successful operational cycle. Relationship between these reliability measurement variables(mileage and cycle) should be examined first of all in the reliability estimation of components. Relationship between mileage and cycles is commonly known as linear function. However, the gradient depends on the operational environmental condition. Therefore, estimation of mission profile variable should be done with correlation analysis at the same time. In this paper, we derive mission profile variable of an hydraulic clutch system by field vehicle test and suggest the determination process of durability test parameters of CMC(Clutch Master Cylinder) with mission profile variable.

PHEV(Plug in Hybrid Electric Vehicle)의 클러치 구동 시스템을 위한 BLDC 모터의 위치제어기 (Position Controller for Clutch Drive System of PHEV(Plug in Hybrid Electric Vehicle))

  • 진용신;신희근;김학원;목형수;조관열
    • 전력전자학회논문지
    • /
    • 제17권2호
    • /
    • pp.166-173
    • /
    • 2012
  • Plug-in Hybrid Electric Vehicle is driven by the engine, the primary traction motor, and the secondary auxiliary motor generating the electric power for battery charging. Secondary auxiliary motor should be connected to the engine or separated from the engine by the clutch system. This paper presents the position controller of the BLDC motor for the clutch system of Plug-in Hybrid Electric Vehicle. The BLDC motor can be applied to the clutch system in spite of it's low accuracy of the position control due to high gear ratio between the clutch and the motor. Since the attachment and the detachment between the motor and the engine should be carried out within 0.3 seconds, the position controller with fast acceleration and deceleration is implemented. For the torque control with braking operation for the BLDC motor, the modified bipolar PWM method with low current ripple compared to the conventional unipolar PWM is presented. The position control performance of the BLDC motor for the clutch system is verified through the simulation and experiments.