• Title/Summary/Keyword: Clutch Engagement Shock

Search Result 4, Processing Time 0.02 seconds

A Study on the Control Algorithm for Engine Clutch Engagement During Mode Change of Plug-in Hybrid Electric Vehicles (플러그인 하이브리드 차량의 모드변환에 따른 엔진클러치 접합 제어알고리즘 연구)

  • Sim, Kyuhyun;Lee, Suji;Namkoong, Choul;Lee, Ji-Suk;Han, Kwan-Soo;Hwang, Sung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.9
    • /
    • pp.801-805
    • /
    • 2016
  • In this paper, engine clutch engagement shock is analyzed during the mode change of plug-in hybrid electric vehicles. Multi-driving mode includes the EV (electric vehicle) mode, HEV (hybrid electric vehicle) mode, and engine operating mode. Depending on the mode change, the engine clutch is either engaged or disengaged. The magnitude of shock during clutch engagement is very important because it impacts vehicle acceleration and clutch synchronization speed, which affects ride comfort substantially. The performance simulator of plug-in hybrid electric vehicles was developed using MATLAB/Simulink. The simulation results show that the mode change control algorithm is necessary for minimizing shock during clutch engagement.

A Study on the Characteristics of the Clutch Automation Mechanism of Hybrid Vehicles (하이브리드 차량용 클러치 자동화 기구의 특성 연구)

  • Lim, Won-Sik;Park, Sung-Cheon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.5
    • /
    • pp.778-783
    • /
    • 2012
  • Due to the increase of oil price, the needs of the reduction of the fuel cost is rising. Therefore, necessity of hybrid vehicle that runs with engine and the electric motor is on the rise. In order to improve the performance of hybrid vehicle, many researches is carried out. Hybrid vehicles have been developed with the various layout such as serial type, parallel type, power split type, and multi-mode type. The multi-mode hybrid vehicles are designed to show the efficient driving characteristics at low speed and high speed. But the multi-mode system have the problem such as frequent clutch engagement. Frequent clutch engagement causes the shock of vehicles, and the shock inhibits the ride comfort. In this study, automation mechanism of clutch operation is proposed to mitigate the shock at engaging clutch. For this purpose, the dynamic characteristics of motor control is numerically analyzed by using Matlab/Simulink.

A Development of Parallel Type Hybrid Drivetrain System for Transit Bus Part 6 : A Development of Shift Control Algorithm for Improving the Shift Characteristics of the Hybrid Drivetrain with AMT (버스용 병렬형 하이브리드 동력전달계의 개발 (VI) 제 6 편 : 하이브리드 동력전달계용 자동화 변속기의 변속 질 향상을 위한 변속 제어 알고리듬의 개발)

  • 조성태;전순일;조한상;박영일;이장무
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.105-114
    • /
    • 2001
  • In this study, a shift control algorithm far improving the shift quality of a parallel hybrid drivetrain with an automated manual transmission (AM) is proposed. The general AMT requires the sophisticated control of clutch in the clutch engagement to improve its shift characteristics, and that is generally known to be difficult. But in this hybrid drivetrain, we can control the speeds of clutch plates by engine and motor control, and it provides the easier clutch control in shift process than general AMT. Additionally, it permits the much-reduced shift shock. The motor control during the shift period is also to achieve reduced velocity drop of the vehicle in comparison with that of a general AMT. Furthermore various dynamometer-based experiments are carried out to prove the validity of the proposed shift control algorithm.

  • PDF

A Development of Parallel Type Hybrid Drivetrain System for Transit Bus Part 2 : A Development of Advanced Shift Control Algorithm for Hybrid Vehicle with Automated Manual Transmission (버스용 병렬형 하이브리드 동력전달계의 개발(II) 제2편 : 자동화변속기가 장착된 하이브리드 차량의 향상된 변속 제어 알고리듬 개발)

  • 조한상;조성태;이장무;박영일
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.5
    • /
    • pp.96-106
    • /
    • 1999
  • In this study, the advanced shift control algorithm for parallel type hybrid drivetrain system with automated manual transmission(AMT) is proposed. The AMT can be easily realized by mounting the pneumatic actuators and sensors on the clutch and shift levers of the conventional manual transmission. By using the electronic-controlled AMT, engine and induction machine, it is possible to achieve the integrated control of overall system for the efficiency and the performance of the vehicle. Performing the speed control of the induction machine and the engine, the synchronization at gear shifting and the smooth engagement of clutch can be guaranteed. And it enables to reduce the shift shock and shorten the shift time. Hence, it results in the improvement of shift quality and the driving comfort of the vehicle. Dynamometer-based experiments are carried out to prove the validity of the proposed shift control algorithm.

  • PDF