• Title/Summary/Keyword: Clutch Design Parameters

Search Result 39, Processing Time 0.021 seconds

Optimal Design of Multi-Plate Clutch Featuring MR Fluid (MR 유체를 적용한 Multi-Plate Clutch의 최적설계)

  • Park, Jin-Young;Kim, Young-Choon;Oh, Jong-Seok;Jeon, Jae-Hoon;Jeong, Jun-Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.77-83
    • /
    • 2020
  • 4WD technology is being actively applied to passenger cars. Therefore, dry multi-plate clutches are used for transfer cases. On the other hand, dry clutches have problems related to large vibrations and poor ride quality. To solve this problem, this paper proposes a multi-plate clutch with an MR fluid. When fastening the multi-plate clutch in the transfer case, the proposed MR clutch was applied to reduce the shock and friction, which is a key component in a four-wheel-drive system. MR multi-plate clutch has a fluid coupling mode and a compression mode. A torque model equation was derived for the optimal design. The analysis was performed using Ansys Maxwell to optimize the design parameters of the multi-plate clutch. Electromagnetic field analysis confirmed the strength of the magnetic field when the number of disks and plates were changed, and the maximum strength of the magnetic field was 0.45 Tesla. By applying this to the torque equation, the spacing between the plates was 2 mm, and the inner and outer diameters of the plates were selected to be 45 mm and 55 mm, respectively. Overall, this paper proposes an optimal design technique to maximize the performance of an MR multi-plate clutch.

A Study on the Flow Path Position Design of Waviness Friction Pad for Drag Torque Reduction in Wet Type DCT (파형 습식클러치의 드래그 토크 저감을 위한 파형내 유로 위치 설정 설계 연구)

  • Cho, Junghee;Han, Juneyeol;Kim, Woojung;Jang, Siyoul
    • Tribology and Lubricants
    • /
    • v.33 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Drag torque reduction in a wet clutch pack is a key aspect of the design process of the dual clutch transmission (DCT) system. In order to reduce the drag torque caused by lubricant shear resistance, recently developed wet clutch pack systems of DCT, as well as automatic transmission and other four-wheel drive (4WD) couplings, frequently utilize wavy wet clutch pads. Therefore, wavy shape of friction pad are made on the groove patterns like waffle pattern for the reduction of drag torque. Additionally, the groove patterns are designed with larger channels at several locations on the friction pad to facilitate faster outflow of lubricant. However, channel performance is a function of the waviness of the friction pad at the location of the particular channel. This is because the discharge sectional area varies according to the waviness amplitude at the location of the particular channel. The higher location of the additional channel on the friction pad results in a larger cross-sectional area, which allows for a larger flow discharge rate. This results in reduction of the drag torque caused by the shear resistance of DCTF, because of marginal volume fraction of fluid (VOF) in the space between the friction pad and separator. This study computes the VOF in the space between the friction pad and separator, the hydrodynamic pressure developed, and the shear resistance of friction torque, by using CFD software (FLUENT). In addition, the study investigates the dependence of these parameters on the location and waviness amplitude of the channel pattern on the friction pad. The paper presents design guidelines on the proper location of high waviness amplitude on wavy friction pads.

Finite Element Analysis and Optimal Design of Automobile Clutch Diaphragm Spring (자동차 클러치 다이어프램 스프링의 유한요소해석 및 최적설계)

  • Lee, Chun-Yeol;Chae, Yeong-Seok;Gwon, Jae-Do;Nam, Uk-Hui;Kim, Tae-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.6 s.177
    • /
    • pp.1616-1623
    • /
    • 2000
  • A diaphragm spring is an important component of a clutch assembly, characteristics of which depends largely on that of a diaphragm spring. A diaphragm spring is subject to high stress concentration in driving condition, which frequently causes cracks and fracture around finger area. In this paper, behavior of a diaphragm spring is analysed by finite element method to calculate sensitivity of design parameters, which is used to perform optimal design of diaphragm spring shape. As an object function, hoop stresses are taken and minimized to improve durability. Characteristics of the diaphragm is used as equality constraint to maintain the original design purpose and sequential linear programming(SLP) is utilized as an optimization tool. With optimized design, it is verified that concentrated stress is decreased maintaining release load characteristic.

A Study on the Stick-Slip Phenomenon of the Driveline System of a Vehicle in Consideration of Friction (마찰을 고려한 차량 동력전달계의 Stick-Slip 현상에 관한 연구)

  • 윤영진;홍동표;정태진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.4
    • /
    • pp.19-29
    • /
    • 1995
  • This paper discusses the stick-slip phenomenon of the driveline system of a vehicle in consideration of friction. Friction is operated on the between of flywheel and clutch disk. The expressions for obtaining the results have been derived from the equation of motion of a three degree of freedom frictional torsion vibration system which is made up driving part(engine, flywheel), driven part(clutch, transmission) and dynamic load part(vehicle body) by applying forth-order Rungekutta method. It was found that the great affect parameters of the stick-slip or stick motion were surface pressure force between flywheel and clutch disk, time decay parameter of surface pressure force and 1st torsional spring constant of clutch disk when driveline system had been affected by friction force. The results of this study can be used as basic design data of the clutch system for the ride quality improvement of a car.

  • PDF

Friction Characteristics of Magnetic Clutch Used in Automobiles (차량용 마그네틱 클러치의 마찰 특성)

  • Kim, Dong-Wook;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.25 no.4
    • /
    • pp.243-249
    • /
    • 2009
  • A magnetic clutch consists of pulley and disk. It delivers and isolates the power needed for the operation of the compressor used in automotive air conditioning system. To improve the performance, efficiency and durability of automotive air conditioning system, appropriate design of pulley, disk and system working parameters(the magnitude of magnetic force, and so on) is necessary. For that goal, it is required to understand the friction characteristics of magnetic clutch for the initial operating time. In this study, friction tests were carried out in order to investigate the effect of sliding velocity on the friction characteristics of magnetic clutch using pin-on-disk type friction and wear tester. For experiments, pulley and disk used in real automotive air conditioning system were considered. Friction experiments were conducted under various sliding velocities, and coefficients of kinetic friction were obtained. Under the experimental conditions considered in this study, the coefficients of kinetic friction increased with the increase of test number(sliding distance) and decreased with the increase of sliding velocity.

Effects of Friction Plate Area and Clearance on the Drag Torque in a Wet Clutch for an Automatic Transmission (클러치 드래그 토크에 미치는 마찰재 면적 및 클리어런스의 영향)

  • Ryu, Jin Seok;Sung, In-Ha
    • Tribology and Lubricants
    • /
    • v.30 no.6
    • /
    • pp.337-342
    • /
    • 2014
  • The reduction of drag torque is an important research issue in terms of improving transmission efficiency. Drag torque in a wet clutch occurs because of the viscous drag generated by the transmission fluid in a narrow gap (clearance) between the friction plate and a separate plate. The objective of this paper is to observe the effects of the friction plate area and the clearance on the drag torque using finite element simulation. The two-phase flow of air and oil fluid is considered and modeled for the simulation. The simulation analysis reveals that as the rotational speed increases, the drag torque generally increases to a critical point and then decreases sharply at a high speed regime. The clearance between the two plates plays an important role in controlling drag torque peak. An increase in the clearance causes a decrease in shear stress; thus, the drag torque also decreases according to Newton's law of viscosity. An observation of the effect of the area of contact between transmission fluid and friction plate shows that the drag torque increases with the contact area. The flow vectors inside the flow channel present clear evidence that the velocity of the fluid flows is faster with a larger friction plate, that is, in the case of a larger contact area. Therefore, the optimum size of the friction plate should be determined carefully, considering both the clutch performance and drag reduction. It is expected that the results from this study can be very useful as a database for clutch design and to predict the drag torque for the initial design with respect to various clutch parameters.

A Study on Design Parameters of Dual Mass Flywheel System (Dual Mass Flywheel 시스템의 설계 파라미터에 관한 연구)

  • 송준혁;홍동표;양성모
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.1
    • /
    • pp.90-98
    • /
    • 1998
  • A Dual Mass Flywheel(D.M.F.) system is an evolution to the reduction of torsional vibration and impact noise occurring in powertrain when a vehicle is either moving or idling. The D.M.F. system has two flywh-eels, which is different from the conventional clutch system. One section belongs to the mass moment of in-ertia of the engine-side. The other section increases the mass moment of inertia of the transmission-side. These two masses are connected via a spring/damping system. This reduces the speed at which the dreaded resonance occurs to below idle speed. Since 1984m D.M.F. system has been developed. However, the processes of development of D.M.F. system don't have any difference from the trial and error method of conventional clutch system. This paper present the method for systematical design of D.M.F. system with dimensionless design varia-bles of D.M.F. system, mass ratio between two flywheels, natural frequency rate of two flywheels, and visc-osity coefficient. And expermental results are used to prove these theoretical results.

  • PDF

the Shifting Control in Automatic Transmission by Independent-Acting Clutches (클러치의 독립구동에 의한 자동변속기의 변속제어)

  • 김정관;한명철;홍금식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.4
    • /
    • pp.68-84
    • /
    • 2000
  • A study to reduce the transient torque in shifting in automatic transmission has been very important issue. Recently it is really dominant to decrease the torque by using independent-acting hydraulic circuit because we can control the clutch pressure actively and elaborately. So we design the new hydraulic circuit to control the clutches in automatic transmission and make the module library of computer simulations, We apply the results to GM model automatic transmission and carry out 1longrightarrow4 shifting simulations. By this work we recognize the capability of active and elaborate clutch pressure control using new hydraulic circuit. In addition We develop the tool to simulate the powertrain system. It is easier to update and exchange the subsystem model or parameters than conventional simulation tools.

  • PDF

A study on the idle gear rattle vibration and noise reduction for heavy duty truck (대형트럭 공회전시 기어래틀 진동소음 저감에 관한 연구)

  • Ahn, Byoung-Min;Chang, Il-Do;Hong, Dong-Pyo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.4
    • /
    • pp.762-767
    • /
    • 1998
  • The main torsional vibration source of the powertrain is the fluctuation of engine torque. The gear rattle is impact generating in the backlash of the free gear due to this torsional vibration. Optimization of the clutch torsional characteristic is one of the effective method to reduce the idle gear rattle. Many researches have been reported on this problem but only few of them give sufficient consideration to the detailed clutch modeling and the experiment. This paper pays attention to the optimization of clutch design parameters and the experiment to reduce the idle gear rattle vibration and noise.

Pressure Modulation Control of Powershift Shuttle Clutch of Tractor (트랙터용 파워시프트 전.후진 클러치의 압력 모듈레이션 제어)

  • Cho, Jae-Mun;Huh, Jun-Young;Chong, Byung-Hak;Kim, Kyeong-Uk
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1572-1577
    • /
    • 2003
  • The powershift transmission have the advantage of easier operation and higher efficiency by using the hydraulic clutch and mechanical power transfer system. It is important to control the engaging pressure and time. The hydraulic control system is used for these controls of the modulator valve, the accumulator, the sump valve and etc. This study have made a simulator for verifying the pressure characteristic of the shuttle powershift transmission and developed the computer simulation model of the hydraulic components and system by using 'AMESim'. As a result, the design parameters which have an effect on the pressure modulation are verified to the spring stiffness of the modulator valve and the volume of the accumulator.

  • PDF