• 제목/요약/키워드: Clustering sampling

검색결과 86건 처리시간 0.032초

Weighted subsampling 기반의 향상된 영상 클러스터링 알고리즘 (Improved Image Clustering Algorithm based on Weighted Sub-sampling)

  • 최병인;남상훈;정시창;윤정수;양유경
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2008년도 하계종합학술대회
    • /
    • pp.939-940
    • /
    • 2008
  • In this paper, we propose a novel image clustering method based on weighted sub-sampling to reduce clustering time and the number of clusters for target detection and tracking. Our proposed method first obtain sub-sampling image with specific weights which is the number of target pixels in sampling region. After performing clustering procedure, the cluster center position is properly obtained using weights of target pixels in the cluster. Therefore, our proposed method can not only reduce clustering time, but also obtain proper cluster center.

  • PDF

최적화에 기반 한 데이터 클러스터링 알고리즘 (New Optimization Algorithm for Data Clustering)

  • 김주미
    • 지능정보연구
    • /
    • 제13권3호
    • /
    • pp.31-45
    • /
    • 2007
  • 대용량의 데이터 처리에 관한 문제는 데이터 마이닝 내 중요한 이슈 중의 하나이다. 특히 데이터 클러스터링과 같이 컴퓨터 시뮬레이션으로 인한 부하가 큰 경우 더더욱 그러하다. 그러나 대개 이러한 문제는 Random sampling 으로 어느 정도 해결이 가능하다. 문제는 이런 샘플링을 통해서 발생하는 noise의 해결이다. 본 논문에서는 그러한 noise문제를 극복할 수 있도록 설계된 새로운 데이터클러스터링 알고리즘을 소개한다. 기존의 데이터 클러스팅 알고리즘과의 컴퓨터 비교 실험을 통해 본 알고리즘의 우수성을 밝혔으며 아울러 더 나아가 데이터 set의 일부만을 사용한 시뮬레이션 결과를 통해, 해의 정확도와 상관없이 실험 시간 또한 단축되었음을 보여주고 있다.

  • PDF

K-means Clustering using a Grid-based Sampling

  • 박희창;조광현
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 한국데이터정보과학회 2003년도 추계학술대회
    • /
    • pp.249-258
    • /
    • 2003
  • K-means clustering has been widely used in many applications, such that pattern analysis or recognition, data analysis, image processing, market research and so on. It can identify dense and sparse regions among data attributes or object attributes. But k-means algorithm requires many hours to get k clusters that we want, because it is more primitive, explorative. In this paper we propose a new method of k-means clustering using the grid-based sample. It is more fast than any traditional clustering method and maintains its accuracy.

  • PDF

이단계표본추출을 이용한 소결핵병 유병률 추정 (Two-stage Sampling for Estimation of Prevalence of Bovine Tuberculosis)

  • 박선일
    • 한국임상수의학회지
    • /
    • 제28권4호
    • /
    • pp.422-426
    • /
    • 2011
  • For a national survey in which wide geographic region or an entire country is targeted, multi-stage sampling approach is widely used to overcome the problem of simple random sampling, to consider both herd- and animallevel factors associated with disease occurrence, and to adjust clustering effect of disease in the population in the calculation of sample size. The aim of this study was to establish sample size for estimating bovine tuberculosis (TB) in Korea using stratified two-stage sampling design. The sample size was determined by taking into account the possible clustering of TB-infected animals on individual herds to increase the reliability of survey results. In this study, the country was stratified into nine provinces (administrative unit) and herd, the primary sampling unit, was considered as a cluster. For all analyses, design effect of 2, between-cluster prevalence of 50% to yield maximum sample size, and mean herd size of 65 were assumed due to lack of information available. Using a two-stage sampling scheme, the number of cattle sampled per herd was 65 cattle, regardless of confidence level, prevalence, and mean herd size examined. Number of clusters to be sampled at a 95% level of confidence was estimated to be 296, 74, 33, 19, 12, and 9 for desired precision of 0.01, 0.02, 0.03, 0.04, 0.05, and 0.06, respectively. Therefore, the total sample size with a 95% confidence level was 172,872, 43,218, 19,224, 10,818, 6,930, and 4,806 for desired precision ranging from 0.01 to 0.06. The sample size was increased with desired precision and design effect. In a situation where the number of cattle sampled per herd is fixed ranging from 5 to 40 with a 5-head interval, total sample size with a 95% confidence level was estimated to be 6,480, 10,080, 13,770, 17,280, 20.925, 24,570, 28,350, and 31,680, respectively. The percent increase in total sample size resulting from the use of intra-cluster correlation coefficient of 0.3 was 22.2, 32.1, 36.3, 39.6, 41.9, 42.9, 42,2, and 44.3%, respectively in comparison to the use of coefficient of 0.2.

Improvement of SOM using Stratification

  • Jun, Sung-Hae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제9권1호
    • /
    • pp.36-41
    • /
    • 2009
  • Self organizing map(SOM) is one of the unsupervised methods based on the competitive learning. Many clustering works have been performed using SOM. It has offered the data visualization according to its result. The visualized result has been used for decision process of descriptive data mining as exploratory data analysis. In this paper we propose improvement of SOM using stratified sampling of statistics. The stratification leads to improve the performance of SOM. To verify improvement of our study, we make comparative experiments using the data sets form UCI machine learning repository and simulation data.

다변량기법을 활용한 용담호 수질측정지점 유사성 연구 (A Study on Measuring the Similarity Among Sampling Sites in Lake Yongdam with Water Quality Data Using Multivariate Techniques)

  • 이요상;권세혁
    • 환경영향평가
    • /
    • 제18권6호
    • /
    • pp.401-409
    • /
    • 2009
  • Multivariate statistical approaches to classify sampling sites with measuring their similarity by water quality data and understand the characteristics of classified clusters have been discussed for the optimal water quality monitering network. For empirical study, data of two years (2005, 2006) at the 9 sampling sites with the combination of 2 depth levels and 7 important variables related to water quality is collected in Yongdam reservoir. The similarity among sampling sites is measured with Euclidean distances of water quality related variables and they are classified by hierarchical clustering method. The clustered sites are discussed with principal component variables in the view of the geographical characteristics of them and reducing the number of measuring sites. Nine sampling sites are clustered as follows; One cluster of 5, 6, and 7 sampling sites shows the characteristic of low water depth and main stream of water. The sites of 2 and 4 are clustered into the same group by characteristics of hydraulics which come from that of main stream. But their changing pattern of water quality looks like different since the site of 2 is near to dam. The sampling sites of 3, 8, and 9 are individually positioned due to the different tributary.

저수지 수질조사 지점간 유사성 분석 (A Study on Measuring the Similarity Among Sampling Sites in Lake)

  • 이요상;고덕구;이현석
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2010년도 학술발표회
    • /
    • pp.957-961
    • /
    • 2010
  • Multivariate statistical approaches to classify sampling sites with measuring their similarity by water quality data. For empirical study, data of two years at the 9 sampling sites with the combination of 2 depth levels and 7 important variables related to water quality is collected in reservoir. The similarity among sampling sites is measured with Euclidean distances of water quality related variables and they are classified by hierarchical clustering method. The clustered sites are discussed with principal component variables in the view of the geographical characteristics of them and reducing the number of measuring sites. Nine sampling sites are clustered as follows; One cluster of 5, 6, and 7 sampling sites shows the characteristic of low water depth and main stream of water. The sites of 2 and 4 are clustered into the same group by characteristics of hydraulics which come from that of main stream. But their changing pattern of water quality looks like different since the site of 2 is near to dam. The sampling sites of 3, 8, and 9 are individually positioned due to the different tributary.

  • PDF

시퀀스 요소 기반의 유사도를 이용한 시퀀스 데이터 클러스터링 (Mining Clusters of Sequence Data using Sequence Element-based Similarity Measure)

  • 오승준;김재련
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2004년도 추계학술대회
    • /
    • pp.221-229
    • /
    • 2004
  • Recently, there has been enormous growth in the amount of commercial and scientific data, such as protein sequences, retail transactions, and web-logs. Such datasets consist of sequence data that have an inherent sequential nature. However, only a few of the existing clustering algorithms consider sequentiality. This study presents a method for clustering such sequence datasets. The similarity between sequences must be decided before clustering the sequences. This study proposes a new similarity measure to compute the similarity between two sequences using a sequence element. Two clustering algorithms using the proposed similarity measure are proposed: a hierarchical clustering algorithm and a scalable clustering algorithm that uses sampling and a k-nearest neighbor method. Using a splice dataset and synthetic datasets, we show that the quality of clusters generated by our proposed clustering algorithms is better than that of clusters produced by traditional clustering algorithms.

  • PDF

Intelligent LoRa-Based Positioning System

  • Chen, Jiann-Liang;Chen, Hsin-Yun;Ma, Yi-Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권9호
    • /
    • pp.2961-2975
    • /
    • 2022
  • The Location-Based Service (LBS) is one of the most well-known services on the Internet. Positioning is the primary association with LBS services. This study proposes an intelligent LoRa-based positioning system, called AI@LBS, to provide accurate location data. The fingerprint mechanism with the clustering algorithm in unsupervised learning filters out signal noise and improves computing stability and accuracy. In this study, data noise is filtered using the DBSCAN (Density-Based Spatial Clustering of Applications with Noise) algorithm, increasing the positioning accuracy from 95.37% to 97.38%. The problem of data imbalance is addressed using the SMOTE (Synthetic Minority Over-sampling Technique) technique, increasing the positioning accuracy from 97.38% to 99.17%. A field test in the NTUST campus (www.ntust.edu.tw) revealed that AI@LBS system can reduce average distance error to 0.48m.

범주형 시퀀스들에 대한 확장성 있는 클러스터링 방법 (A Scalable Clustering Method for Categorical Sequences)

  • 오승준;김재련
    • 한국지능시스템학회논문지
    • /
    • 제14권2호
    • /
    • pp.136-141
    • /
    • 2004
  • 소매점 거래 데이터와 단백질 시퀀스, 웹 로그 등과 같은 상업적이거나 과학적인 데이터의 폭발적인 증가를 볼 수 있다. 이런 데이터들은 순서적인 면을 가지고 있는 시퀀스 데이터들이다. 그러나, 순서적인 면을 고려한 클러스터링 알고리듬은 소수이다. 따라서, 본 연구에서는 시퀀스 데이터들을 클러스터링 하는 방법을 연구한다. 시퀀스들 간의 유사도를 계산하기 위한 새로운 유사도를 제안한다. 또한, 유사도를 효율적으로 계산하기 위한 방법과 클러스터링 방법도 제안한다. 계층적 클러스터링 알고리듬은 높은 계산량을 가지고 있기에, 새로운 클러스터링 방법이 요구된다. 그러므로, 본 연구에서는 샘플링과 k-nn 방법을 이용한 확장성 있는 클러스터링 방법을 제안한다. 실제 데이터 셋과 합성 데이터 셋을 이용하여, 본 연구에서 제안하는 방법이 기존 방법보다 성능이 우수함을 보여준다.