• Title/Summary/Keyword: Clustering routing protocols

Search Result 63, Processing Time 0.027 seconds

A Study of Wireless Sensor Network Routing Protocols for Maintenance Access Hatch Condition Surveillance

  • Lee, Hoo-Rock;Chung, Kyung-Yul;Jhang, Kyoung-Son
    • Journal of Information Processing Systems
    • /
    • v.9 no.2
    • /
    • pp.237-246
    • /
    • 2013
  • Maintenance Access Hatches are used to ensure urban safety and aesthetics while facilitating the management of power lines, telecommunication lines, and gas pipes. Such facilities necessitate affordable and effective surveillance. In this paper, we propose a FiCHS (Fixed Cluster head centralized Hierarchical Static clustering) routing protocol that is suitable for underground maintenance hatches using WSN (Wireless Sensor Network) technology. FiCHS is compared with three other protocols, LEACH, LEACH-C, and a simplified LEACH, based on an ns-2 simulation. FiCHS was observed to exhibit the highest levels of power and data transfer efficiency.

A Study on Energy Conservative Hierarchical Clustering for Ad-hoc Network (애드-혹 네트워크에서의 에너지 보존적인 계층 클러스터링에 관한 연구)

  • Mun, Chang-Min;Lee, Kang-Whan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.12
    • /
    • pp.2800-2807
    • /
    • 2012
  • An ad-hoc wireless network provides self-organizing data networking while they are routing of packets among themselves. Typically multi-hop and control packets overhead affects the change of route of transmission. There are numerous routing protocols have been developed for ad hoc wireless networks as the size of the network scale. Hence the scalable routing protocol would be needed for energy efficient various network routing environment conditions. The number of depth or layer of hierarchical clustering nodes are analyzed the different clustering structure with topology in this paper. To estimate the energy efficient number of cluster layer and energy dissipation are studied based on distributed homogeneous spatial Poisson process with context-awareness nodes condition. The simulation results show that CACHE-R could be conserved the energy of node under the setting the optimal layer given parameters.

An Energy-Efficient Clustering Protocol Based on The Cross-Layer Design in Wireless Sensor Networks (무선 센서 네트워크에서 크로스 레이어 기반의 에너지 효율적인 클러스터링 프로토콜)

  • Kim, Tae-Kon;Lee, Hyung-Keun
    • Journal of IKEEE
    • /
    • v.11 no.4
    • /
    • pp.165-170
    • /
    • 2007
  • The main goal of research concerning clustering protocols is to minimize the energy consumption of each node and maximize the network lifetime of wireless sensor networks. However, most existing clustering protocols mainly focused on the design and formation of clusters, leaving the consideration of communication between the cluster head and the sink behind. In this paper, we propose efficient multi path routing algorithm by using MAC-NET Cross-layering. multi path needed only one tiny packet from sink to setup. In addition proposed algorithm can be used for any cluster-based hierarchical inter-clustering routing algorithm. The simulation results demonstrate that proposed algorithm extended the overall survival time of the network by reducing the load of cluster heads. The performance of proposed algorithm is less affected by the extension of sensing field than other inter-clustering operation.

  • PDF

Routing and Forwarding with Flexible Addressing

  • Poutievski, Leonid B.;Calvert, Kenneth L.;Griffioen, James N.
    • Journal of Communications and Networks
    • /
    • v.9 no.4
    • /
    • pp.383-393
    • /
    • 2007
  • We present a new network-layer architecture that provides generalized addressing. The forwarding infrastructure is independent of the addressing architecture, so multiple addressing architectures can be used simultaneously. We compare our solution with the existing Internet protocols for unicast and multicast services, given the address assignment used in the Internet. By means of an extensive simulation study, we determine the range of parameters for which the overhead costs(delay, state, and network load) of our service are comparable to those of the Internet.

Efficient USN Routing Protocol using Sub-Clustering

  • Jeong, Su-Hyung;Yoo, Hae-Young
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.4
    • /
    • pp.466-469
    • /
    • 2008
  • The existing routing protocols in USN environment, PEGASIS is more efficient than LEACH, which is a hierarchical routing protocol, for network configuration based on power consumption. Despite its merit that it can reduce energy consumption per node, however, the PEGASIS protocol also has a weakness that it is less responsive to frequent changes that occur in the configuration of sensor network due to BS nodes that keep changing, which is a typical characteristic of the sensor network. To address this problem, this paper proposes to select sub-cluster heads and have them serve as intermediate nodes. This paper presents and analyses that this method can resolve the aforementioned problem of the PEGASIS algorithm.

Energy Efficient Two-Tier Routing Protocol for Wireless Sensor Networks (센서 네트워크에서 에너지 효율성을 고려한 two-tier 라우팅 프로토콜)

  • Ahn Eun-Chul;Lee Sung-Hyup;Cho You-Ze
    • The KIPS Transactions:PartC
    • /
    • v.13C no.1 s.104
    • /
    • pp.103-112
    • /
    • 2006
  • Since sensor node has a limited energy supply in a wireless sensor network, it is very important to maximize the network lifetime through energy-efficient routing. Thus, many routing protocols have been developed for wireless sensor networks and can be classified into flat and hierarchical routing protocols. Recent researches focus on hierarchical routing scheme and LEACH is a representative hierarchical routing protocol. In this paper, we investigated the problems of the LEACH and proposed a novel energy efficient routing scheme, called ENTER(ENergy efficient Two-tiEr Routing protocol), to resolve the problem. ENTER reduces an energy consumption and increases a network lifetime by organizing clusters by the same distributed algerian as in the LEACH and establishing paths among cluster-heads to transmit the aggregated data to the sink node. We compared the performance of the ENTER with the LEACH through simulation and showed that the ENTER could enhance the network lifetime by utilizing the resources more efficiently.

Design of the Fuzzy-based Mobile Model for Energy Efficiency within a Wireless Sensor Network

  • Yun, Dai Yeol;Lee, Daesung
    • Journal of information and communication convergence engineering
    • /
    • v.19 no.3
    • /
    • pp.136-141
    • /
    • 2021
  • Research on wireless sensor networks has focused on the monitoring and characterization of large-scale physical environments and the tracking of various environmental or physical conditions, such as temperature, pressure, and wind speed. We propose a stochastic mobility model that can be applied to a MANET (Mobile Ad-hoc NETwork). environment, and apply this mobility model to a newly proposed clustering-based routing protocol. To verify its stability and durability, we compared the proposed stochastic mobility model with a random model in terms of energy efficiency. The FND (First Node Dead) was measured and compared to verify the performance of the newly designed protocol. In this paper, we describe the proposed mobility model, quantify the changes to the mobile environment, and detail the selection of cluster heads and clusters formed using a fuzzy inference system. After the clusters are configured, the collected data are sent to a base station. Studies on clustering-based routing protocols and stochastic mobility models for MANET applications have shown that these strategies improve the energy efficiency of a network.

A Virtual Laboratory to Practice Mobile Wireless Sensor Networks: A Case Study on Energy Efficient and Safe Weighted Clustering Algorithm

  • Dahane, Amine;Berrached, Nasr-Eddine;Loukil, Abdelhamid
    • Journal of Information Processing Systems
    • /
    • v.11 no.2
    • /
    • pp.205-228
    • /
    • 2015
  • In this paper, we present a virtual laboratory platform (VLP) baptized Mercury allowing students to make practical work (PW) on different aspects of mobile wireless sensor networks (WSNs). Our choice of WSNs is motivated mainly by the use of real experiments needed in most courses about WSNs. These experiments require an expensive investment and a lot of nodes in the classroom. To illustrate our study, we propose a course related to energy efficient and safe weighted clustering algorithm. This algorithm which is coupled with suitable routing protocols, aims to maintain stable clustering structure, to prevent most routing attacks on sensor networks, to guaranty energy saving in order to extend the lifespan of the network. It also offers a better performance in terms of the number of re-affiliations. The platform presented here aims at showing the feasibility, the flexibility and the reduced cost of such a realization. We demonstrate the performance of the proposed algorithms that contribute to the familiarization of the learners in the field of WSNs.

An Analysis on the Effects of Cluster Leadership Rotation among Nodes Using Least Temperature Routing Protocol

  • Encarnacion, Nico;Yang, Hyunho
    • Journal of information and communication convergence engineering
    • /
    • v.12 no.2
    • /
    • pp.104-108
    • /
    • 2014
  • The field of body sensor networks has attracted interest of many researchers due to its potential to revolutionize medicine. These sensors are usually implanted inside the human body and communicate among themselves. In the process of receiving, processing, or transmitting data, these devices produce heat. This heat damages the tissues surrounding the devices in the case of prolonged exposure. In this paper, to reduce this damages, we have improved and evaluated two protocols-the least temperature routing protocol and adaptive least temperature routing protocol-by implementing clustering as well as a leadership rotation algorithm. We used Castalia to simulate a basic body area network cluster composed of 6 nodes. A throughput application was used to simulate all the nodes sending data to one sink node. Simulations results shows that improved communication protocol with leadership rotation algorithm significantly reduce the energy consumption as compared to a scheme without leadership rotation algorithm.

Scalable Cluster Overlay Source Routing Protocol (확장성을 갖는 클러스터 기반의 라우팅 프로토콜)

  • Jang, Kwang-Soo;Yang, Hyo-Sik
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.3
    • /
    • pp.83-89
    • /
    • 2010
  • Scalable routing is one of the key challenges in designing and operating large scale MANETs. Performance of routing protocols proposed so far is only guaranteed under various limitation, i.e., dependent of the number of nodes in the network or needs the location information of destination node. Due to the dependency to the number of nodes in the network, as the number of nodes increases the performance of previous routing protocols degrade dramatically. We propose Cluster Overlay Dynamic Source Routing (CODSR) protocol. We conduct performance analysis by means of computer simulation under various conditions - diameter scaling and density scaling. Developed algorithm outperforms the DSR algorithm, e.g., more than 90% improvement as for the normalized routing load. Operation of CODSR is very simple and we show that the message and time complexity of CODSR is independent of the number of nodes in the network which makes CODSR highly scalable.