• Title/Summary/Keyword: Clustering Communication Protocols

Search Result 39, Processing Time 0.021 seconds

Distance Aware Intelligent Clustering Protocol for Wireless Sensor Networks

  • Gautam, Navin;Pyun, Jae-Young
    • Journal of Communications and Networks
    • /
    • v.12 no.2
    • /
    • pp.122-129
    • /
    • 2010
  • Energy conservation is one of the most important issues for evaluating the performance of wireless sensor network (WSN) applications. Generally speaking, hierarchical clustering protocols such as LEACH, LEACH-C, EEEAC, and BCDCP are more efficient in energy conservation than flat routing protocols. However, these typical protocols still have drawbacks of unequal and high energy depletion in cluster heads (CHs) due to the different transmission distance from each CH to the base station (BS). In order to minimize the energy consumption and increase the network lifetime, we propose a new hierarchical routing protocol, distance aware intelligent clustering protocol (DAIC), with the key concept of dividing the network into tiers and selecting the high energy CHs at the nearest distance from the BS. We have observed that a considerable amount of energy can be conserved by selecting CHs at the nearest distance from the BS. Also, the number of CHs is computed dynamically to avoid the selection of unnecessarily large number of CHs in the network. Our simulation results showed that the proposed DAIC outperforms LEACH and LEACH-C by 63.28% and 36.27% in energy conservation respectively. The distance aware CH selection method adopted in the proposed DAIC protocol can also be adapted to other hierarchical clustering protocols for the higher energy efficiency.

Clustering Scheme for (m,k)-Firm Streams in Wireless Sensor Networks

  • Kim, Ki-Il
    • Journal of information and communication convergence engineering
    • /
    • v.14 no.2
    • /
    • pp.84-88
    • /
    • 2016
  • As good example of potential application-specific requirement, (m,k)-firm real-time streams have been recently introduced to deliver multimedia data efficiently in wireless sensor networks. In addition to stream model, communication protocols to meet specific (m,k)-firm real-time streams have been newly developed or extended from existing protocols. However, since the existing schemes for an (m,k)-firm stream have been proposed under typical flat architecture, the scalability problem remains unsolved when the number of real-time flows increases in the networks. To solve this problem, in this paper, we propose a new clustering scheme for an (m,k)-firm stream. The two different clustering algorithms are performed according to either the (m,k)-firm requirement or the deadline. Simulation results are presented to demonstrate the suitability of the proposed scheme under hierarchical architecture by showing that its performance is acceptable irrespective of the increase in the number of flows.

Performance Evaluation of Distributed Clustering Protocol under Distance Estimation Error

  • Nguyen, Quoc Kien;Jeon, Taehyun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.10 no.1
    • /
    • pp.11-15
    • /
    • 2018
  • The application of Wireless Sensor Networks requires a wise utilization of limited energy resources. Therefore, a wide range of routing protocols with a motivation to prolong the lifetime of a network has been proposed in recent years. Hierarchical clustering based protocols have become an object of a large number of studies that aim to efficiently utilize the limited energy of network components. In this paper, the effect of mismatch in parameter estimation is discussed to evaluate the robustness of a distanced based algorithm called distributed clustering protocol in homogeneous and heterogeneous environment. For quantitative analysis, performance simulations for this protocol are carried out in terms of the network lifetime which is the main criteria of efficiency for the energy limited system.

Lifetime-based Clustering Communication Protocol for Wireless Sensor Networks (무선 센서 네트워크를 위한 잔여 수명 기반 클러스터링 통신 프로토콜)

  • Jang, Beakcheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.4
    • /
    • pp.2370-2375
    • /
    • 2014
  • Wireless sensor networks (WSNs) have a big potential for distributed sensing for large geographical area. The improvement of the lifetime of WSNs is the important research topic because it is considered to be difficult to change batteries of sensor nodes. Clustering communication protocols are energy-efficient because each sensor node can send its packet to the cluster head near from itself rather than the sink far from itself. In this paper, we present an energy-efficient clustering communication protocol, which chooses cluster heads based on the expected residual lifetime of each sensor node. Simulation results show that our proposed scheme increases average lifetimes of sensor nodes as much as 20% to 30% in terms of the traffic quantity and as much as 30% to 40% in terms of the scalability compared to the existing clustering communication protocol, LEACH.

Entropy-based Correlation Clustering for Wireless Sensor Networks in Multi-Correlated Regional Environments

  • Nga, Nguyen Thi Thanh;Khanh, Nguyen Kim;Hong, Son Ngo
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.2
    • /
    • pp.85-93
    • /
    • 2016
  • The existence of correlation characteristics brings significant potential advantages to the development of efficient routing protocols in wireless sensor networks. This research proposes a new simple method of clustering sensor nodes into correlation groups in multiple-correlation areas. At first, the evaluation of joint entropy for multiple-sensed data is considered. Based on the evaluation, the definition of correlation region, based on entropy theory, is proposed. Following that, a correlation clustering scheme with less computation is developed. The results are validated with a real data set.

Schedule communication routing approach to maximize energy efficiency in wireless body sensor networks

  • Kaebeh, Yaeghoobi S.B.;Soni, M.K.;Tyagi, S.S.
    • Smart Structures and Systems
    • /
    • v.21 no.2
    • /
    • pp.225-234
    • /
    • 2018
  • E-Health allows you to supersede the central patient wireless healthcare system. Wireless Body Sensor Network (WBSN) is the first phase of the e-Health system. In this paper, we aim to understand e-Health architecture and configuration, and attempt to minimize energy consumption and latency in transmission routing protocols during restrictive latency in data delivery of WBSN phase. The goal is to concentrate on polling protocol to improve and optimize the routing time interval and schedule communication to reduce energy utilization. In this research, two types of network models routing protocols are proposed - elemental and clustering. The elemental model improves efficiency by using a polling protocol, and the clustering model is the extension of the elemental model that Destruct Supervised Decision Tree (DSDT) algorithm has been proposed to solve the time interval conflict transmission. The simulation study verifies that the proposed models deliver better performance than the existing BSN protocol for WBSN.

Identification of Unknown Cryptographic Communication Protocol and Packet Analysis Using Machine Learning (머신러닝을 활용한 알려지지 않은 암호통신 프로토콜 식별 및 패킷 분류)

  • Koo, Dongyoung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.2
    • /
    • pp.193-200
    • /
    • 2022
  • Unknown cryptographic communication protocols may have advantage of guaranteeing personal and data privacy, but when used for malicious purposes, it is almost impossible to identify and respond to using existing network security equipment. In particular, there is a limit to manually analyzing a huge amount of traffic in real time. Therefore, in this paper, we attempt to identify packets of unknown cryptographic communication protocols and separate fields comprising a packet by using machine learning techniques. Using sequential patterns analysis, hierarchical clustering, and Pearson's correlation coefficient, we found that the structure of packets can be automatically analyzed even for an unknown cryptographic communication protocol.

An Energy-Efficient Clustering Protocol Based on The Cross-Layer Design in Wireless Sensor Networks (무선 센서 네트워크에서 크로스 레이어 기반의 에너지 효율적인 클러스터링 프로토콜)

  • Kim, Tae-Kon;Lee, Hyung-Keun
    • Journal of IKEEE
    • /
    • v.11 no.4
    • /
    • pp.165-170
    • /
    • 2007
  • The main goal of research concerning clustering protocols is to minimize the energy consumption of each node and maximize the network lifetime of wireless sensor networks. However, most existing clustering protocols mainly focused on the design and formation of clusters, leaving the consideration of communication between the cluster head and the sink behind. In this paper, we propose efficient multi path routing algorithm by using MAC-NET Cross-layering. multi path needed only one tiny packet from sink to setup. In addition proposed algorithm can be used for any cluster-based hierarchical inter-clustering routing algorithm. The simulation results demonstrate that proposed algorithm extended the overall survival time of the network by reducing the load of cluster heads. The performance of proposed algorithm is less affected by the extension of sensing field than other inter-clustering operation.

  • PDF

A Study on Routing Protocol for Multi-Drone Communication (멀티드론 통신을 위한 라우팅 프로토콜 연구)

  • Kim, Jongkwon;Chung, Yeongjee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.6
    • /
    • pp.41-46
    • /
    • 2019
  • In this paper, it is necessary to study the bandwidth and network system for efficient image transmission in the current era of drone imaging, and to design routing protocols to round out and cluster two or more multi-drones. First, we want to construct an ad hoc network to control the multidrone. Several studies are underway for the clustering of drones. The aircraft ad hoc network (FANET) is an important foundation for this research. A number of routing protocols have been proposed to design a FANET, and these routing protocols show different performances in various situations and environments. The routing protocol used to design the FANET is tested using the routing protocol used in the existing mobile ad hoc network (MANET). Therefore, we will use MANET to simulate the routing protocol to be used in the FANET, helping to select the optimal routing protocol for future FANET design. Finally, this paper describes the routing protocols that are mainly used in MANET and suitable for FANET, and the performance comparison of routing protocols, which are mainly used in FANET design.

Efficient Error Recovery Protocol for ATM Clustering Systems (ATM 클러스터링 시스템을 위한 효율적인 에러 복구 프로토콜)

  • Jeong, Jae-Ung;Lee, Jong-Gwon;Kim, Yong-Jae;Kim, Tak-Gon;Park, Gyu-Ho;Yu, Seung-Hwa
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.26 no.12
    • /
    • pp.1493-1503
    • /
    • 1999
  • ATM Clustering System과 같이 SAN(System Area Network) 환경에서 동작하는 시스템은 낮은 지연시간과 넓은 대역폭의 네트워크가 필수적이나 기존의 에러 복구 프로토콜들은 이러한 요구를 충족시키기에는 큰 오버헤드를 가지고 있다. 제안된 새로운 에러 복구 프로토콜은 ATM Clustering System 환경에서 최적의 성능을 나타내는 light-weight 프로토콜로 에러가 없는 상황과 에러 복구가 진행중인 상황에 따라 acknowledgement 주기를 적응적으로 변화시키는 adaptive acknowledgement scheme를 제안하여 적용하였다. 제안된 프로토콜은 상용 툴인 SDT를 이용한 논리 검증 받았고, DEVSim++ 환경에서의 성능 분석을 통해 프로토콜이 최상의 성능을 보이기 위한 파라메터 값을 찾았고, 이 값을 적용하였을 때의 성능을 기존의 프로토콜과 비교하여 제안된 프로토콜이 더 우수함을 확인하였다.Abstract While a system working with SAN, such as ATM Clustering System, requires a network with low latency and wide bandwidth, the previous error recovery protocols have a serious network overhead to satisfy this requirement. The suggested error recovery protocol is a light-weight protocol which can shows its best performance at ATM Clustering System and uses a newly suggested adaptive acknowledgement scheme. In the adaptive acknowledgement scheme, the period of acknowledgement is dynamically changed depending on the state of the network. We proved the logical correctness of our protocol with SDT and did performance analysis with DEVSim++. From the analysis, we found the optimal parameter values for best performance and showed that our protocol works better than the previous error recovery protocols.