• 제목/요약/키워드: Cluster binding energy

검색결과 24건 처리시간 0.023초

HOOCl-H2O Cluster의 구조와 결합에너지에 대한 ab initio 연구 (Ab Initio Study of the Structure and Binding Energy of HOOCl-H2O Cluster)

  • 김영미;성은모
    • 대한화학회지
    • /
    • 제52권3호
    • /
    • pp.322-327
    • /
    • 2008
  • HOOCl-H2O cluster에 대하여 안정한 구조와 결합에너지를 MP2/6-311G(d,p), MP2/6-311G(2d,2p)의 방법으로 계산하였고 vibrational frequency계산을 하여 HOOCl의 vibrational frequency와 비교하였다. Skew HOOCl-H2O cluster가 가장 안정한 cluster로 나타났고 결합에너지는 46~48 kJ/mol 정도이며 trans HOOCl-H2O cluster의 경우도 이보다 불안정하나 비교적 큰 결합에너지를 갖는 것으로 나타났다.

Toward an Accurate Self-interaction Binding Energy of Magic Cluster TiAu_4

  • Han, Young-Kyu;Kim, Jong-Chan;Jung, Jae-Hoon;Yu, Ung-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권2호
    • /
    • pp.305-308
    • /
    • 2008
  • We performed coupled-cluster calculations to determine the intermolecular interaction energy between two TiAu4 clusters. Our ab initio calculations predict that the binding energy is 2.89 eV, which is somewhat larger than the known binding energy of 2.0 eV for TiH4-TiH4. The intermolecular binding energy is relatively high, despite TiAu4 having all the attributes of a magic cluster. The favorable orbital interaction between occupied Au(6s) and unoccupied Ti(3d) orbitals leads to the strong dimeric interaction for TiAu4-TiAu4.

Computational Study of 3-Aminophenol·(CO2)1 Cluster: CO2 Capture Ability of 3-Aminophenol

  • Sohn, Woon-Yong;Kim, Min-Ho;Kim, Sang-Su;Kang, Hyuk
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권10호
    • /
    • pp.2806-2808
    • /
    • 2010
  • The structure of 3-aminophenol $(CO_2)_1$ cluster was computationally studied both in the ground and the lowest singlet excited electronic states. The ground state structure and binding energy of the cluster was investigated using the second-order M$\ddoot{o}$ller-Plesset perturbation theory (MP2) at the complete basis set (CBS) limit. The excited state geometry of the cluster was obtained at the second-order approximate coupled cluster (CC2) level with cc-pVDZ basis set, and the $S_0-S_1$ absorption spectrum was simulated by calculating Franck-Condon overlap integral. The ground state geometry of the global minimum with a very high binding energy of 4.3 kcal/mol was found for the cluster, due to the interaction between amino group and $CO_2$ in addition to the strong $\pi-\pi$ interaction between the aromatic ring and $CO_2$. The excited state geometry shows a very big shift in the position of $CO_2$ compared to the ground state geometry, which results in low intensity and broad envelope in the Franck-Condon simulation.

Binding energy of H2 to MOF-5: A Model Study

  • Lee, Jae-Shin
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권12호
    • /
    • pp.4199-4204
    • /
    • 2011
  • Using models simulating the environment of two distinct adsorption sites of $H_2$ in metal-organic framework-5 (MOF-5), binding energies of $H_2$ to MOF-5 were evaluated at the MP2 and CCSD(T) level. For organic linker section modeled as dilithium 1,4-benzenedicarboxylate ($C_6H_4(COO)_2Li_2$), the MP2 and CCSD(T) basis set limit binding energies are estimated to be 5.1 and 4.4 kJ/mol, respectively. For metal oxide cluster section modeled as $Zn_4O(CO_2H)_6$, while the MP2 basis set limit binding energy estimate amounts to 5.4 kJ/mol, CCSD(T) correction to the MP2 results is shown to be insignificant with basis sets of small size. Substitution of benzene ring with pyrazine ring in the model for the organic linker section in MOF-5 is shown to decrease the $H_2$ binding energy noticeably at both the MP2 and CCSD(T) level, in contrast to the previous study based on DFT calculation results which manifested substantial increase of $H_2$ binding energies upon substitution of benzene ring with pyrazine ring in the similar model.

Backbone NMR chemical shift assignment for the substrate binding domain of Escherichia coli HscA

  • Jin Hae Kim
    • 한국자기공명학회논문지
    • /
    • 제28권2호
    • /
    • pp.6-9
    • /
    • 2024
  • HscA is a Hsp70-type chaperone protein that plays an essential role to mediate the iron-sulfur (Fe-S) cluster biogenesis mechanism in Escherichia coli. Like other Hsp70 chaperones, HscA is composed of two domains: the nucleotide binding domain (NBD), which can hydrolyze ATP and use its chemical energy to facilitate the Fe-S cluster transfer process, and the substrate binding domain (SBD), which directly interacts with the substrate, IscU, the scaffold protein of an Fe-S cluster. In the present work, we prepared the isolated SBD construct of HscA (HscA(SBD)) and conducted the solution-state nuclear magnetic resonance (NMR) experiments to have its backbone chemical shift assignment information. Due to low spectral quality of HscA(SBD), we obtained all the NMR data from the sample containing the peptide LPPVKIHC, the HscA-interaction motif of IscU, from which the chemical shift assignment could be done successfully. We expect that this information provides an important basis to execute detailed structural characterization of HscA and appreciate its interaction with IscU.

Infrared Multiphoton Dissociation Spectroscopy of Protonated 1,2-Diaminoethane-water Clusters: Vibrational Assignment via the MP2 Method

  • Boo, Bong Hyun;Kang, Sukmin;Furuya, Ari;Judai, Ken;Nishi, Nobuyuki
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권11호
    • /
    • pp.3327-3334
    • /
    • 2013
  • Infrared multiphoton dissociation (IRMPD) spectra of various protonated 1,2-diaminoethane-water clusters DAE-$H^+-(H_2O)_n$ (n = 1-6) were measured in the wavelength range of 3000-3800 $cm^{-1}$. The IRMPD spectra of the well separated ionic clusters were simulated by the MP2 method employing various basis sets. Comparison of the IRMPD spectra with the theory indicates that each cluster may exist as several low-lying conformers, and the sum spectra of the various conformers reveal almost one to one correspondence between theory and experiment. Free N-H and O-H stretches are observed in the ranges of 3400-3500 and 3600-3800 $cm^{-1}$, respectively. The $O-H{\cdots}N$ and $N-H{\cdots}O$ stretches are, however, observed in the broad region of 3000-3600 $cm^{-1}$. The theoretical calculations on DAE-$H^+-(H_2O)_n$ (n = 1-4) show gradual decrease of the average binding energy between DAE-$H^+$ and $H_2O$ as the cluster size increases, attaining the lowest value of 55 kJ/mol when n = 4. We found a low energy barrier of 21 kJ/mol to the isomerization converting the lowest energy cluster of DAE-$H^+-(H_2O)_n$ to the second lowest one.

Computational Study of Catechol-(H2O)n(n=1-3) Clusters

  • Jang, Sang-Hee;Park, Sung-Woo;Kang, Joo-Hye;Lee, Sung-Yul
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권9호
    • /
    • pp.1297-1303
    • /
    • 2002
  • Computations are presented for the catechol-$(H_2O)_n$ (n = 1-3) clusters. A variety of conformers are predicted,and their relative energies are compared. Binding energies of the clusters are computed, and detailed analysis is presented on the harmonic frequencies of stretching modes involving the hydrogen bonding in the clusters, comparing with the experimental observations.

Thermodynamics of Small Electron-Bound Water Clusters

  • Lee, Sik;Lee, Han-Myoung
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권6호
    • /
    • pp.802-804
    • /
    • 2003
  • The relative stabilities of weak binding clusters are sensitive to temperature due to the entropy effect. Thus, here we report significant changes in relative stabilities between two low-energy electron-water trimer structures and those between three low-energy electron-water pentamer structures, as the temperature increases. The trimer and pentamer show structural changes around 200 K.

HOOO-(H2O)n (n=1~5) 클러스터의 구조와 에너지에 대한 이론적 연구 (Theoretical Study for the Structures and Binding Energies of HOOO-(H2O)n (n=1~5) Cluster)

  • 김종민;홍성윤;김승준
    • 대한화학회지
    • /
    • 제59권5호
    • /
    • pp.387-396
    • /
    • 2015
  • HOOO-(H2O)n (n=1~5) 클러스터에 대해서 다양한 기저집합과 밀도 범함수 이론(DFT) 및 순 이론(ab initio) 방법을 사용하여 가능한 여러 구조를 최적화하고 결합에너지와 조화진동수를 계산하였다. HOOO 단량체의 경우에는 CCSD(T) 이론 수준에서 trans 구조가 cis 구조보다 열역학적으로 더 안정한 것으로 계산되었다. HOOO-(H2O)n 클러스터에 대해서는 B3LYP/aug-cc-pVTZ와 CAM-B3LYP/aug-cc-pVTZ 이론 수준에서 분자 구조를 최적화하고 열역학적으로 가장 안정한 분자구조를 예측하였다. HOOO-H2O 클러스터의 결합에너지는 MP2//CAM-B3LYP 한 점 에너지 계산에서 영점 진동에너지(ZPVE)와 바탕 집합 중첩에러(BSSE)까지 모두 보정한 후 6.05 kcal/mol로 계산되었으며, n=2-5의 경우에는 물 분자의 수가 증가 할수록 물분자 1개 당 평균 결합에너지는 증가하여 약 7.2 kcal/mol의 값으로 수렴하였다.

Pt(111)/${\gamma}-Al_2O_3$(111) 계면간 결합에 관한 분자 궤도론적 연구 (Molecular Orbital Study of Binding at the Pt(111)/${\gamma}-Al_2O_3$(111) Interface)

  • 최상준;박상문;박동호;허도성
    • 대한화학회지
    • /
    • 제40권4호
    • /
    • pp.264-272
    • /
    • 1996
  • ASED-MO(Atom Superposition and Electoron Delocalization-Molecular Orbtal)이론을 이용하여 Pt(lll)과 ${\upsilon}-Al_2O_3$(III) 표면 모델에 대한 계면간 결합 세기에 관해 연구하였다. $Al^{3+}$의 환원 정도가는 알루미나 뭉치(cluster)에 대한 산소와 알루미늄의 비에 따라 달라진다. $Al^{3+}$의 환원 정도가 크면 클수록 Pt 원소들에 대해 강한 결합 에너지를 가진다. 산소로 덮인 ${\gamma}-Al_{20}_3$(III) 표면과 Pt 계면간 결합이 매우 약하지만 백금의 산화 조건에서의 결합은 매우 강하다. 백금 표면에서 부분적으로 빈 O-2p 띠(band)와 $Al^{3+}$ dangling surface orbital로 전하가 이동하는 전하이동(charge transfer) 메카니즘에 의해 백금과 알루미나 계면간 결합은 가능하다.

  • PDF