Lee Shin Won;Yi Sang Seon;An Dong Un;Chung Sung Jong
Proceedings of the IEEK Conference
/
2004.08c
/
pp.885-889
/
2004
Fast and high-quality document clustering algorithms play an important role in providing data exploration by organizing large amounts of information into a small number of meaningful clusters. Hierarchical clustering improves the performance of retrieval and makes that users can understand easily. For outperforming of clustering, we implemented hierarchical structure with variety and readability, by careful selection of cluster topic words and deciding the number of clusters dynamically. It is important to select topic words because hierarchical clustering structure is summarizes result of searching. We made choice of noun word as a cluster topic word. The quality of topic words is increased $33\%$ as follows. As the topic word of each cluster, the only noun word is extracted for the top-level cluster and the used topic words for the children clusters were not reused.
Park, Sun;Kim, Kyung-Jun;Lee, Jin-Seok;Lee, Seong-Ro
Journal of the Institute of Electronics Engineers of Korea SP
/
v.48
no.5
/
pp.30-38
/
2011
This paper proposes a new enhancing document clustering method using a synonym of cluster topic and the similarity. The proposed method can well represent the inherent structure of document cluster set by means of selecting terms of cluster topic based on the semantic features by NMF. It can solve the problem of "bags of words" by using of expanding the terms of cluster topics which uses the synonyms of WordNet. Also, it can improve the quality of document clustering which uses the cosine similarity between the expanded cluster topic terms and document set to well cluster document with respect to the appropriation cluster. The experimental results demonstrate that the proposed method achieves better performance than other document clustering methods.
Purpose - This is an exploratory study that aims to apply text mining techniques, which computationally extracts words from the large-scale text data, to legal documents to quantify trade claim contents and enables statistical analysis. Design/methodology - This is designed to verify the validity of the application of text mining techniques as a quantitative methodology for trade claim studies, that have relied mainly on a qualitative approach. The subjects are 81 cases of arbitration and court judgments from China published on the website of the UNCITRAL where the CISG was applied. Validation is performed by comparing the manually analyzed result with the automatically analyzed result. The manual analysis result is the cluster analysis wherein the researcher reads and codes the case. The automatic analysis result is an analysis applying text mining techniques to the result of the cluster analysis. Topic modeling and semantic network analysis are applied for the statistical approach. Findings - Results show that the results of cluster analysis and text mining results are consistent with each other and the internal validity is confirmed. And the degree centrality of words that play a key role in the topic is high as the between centrality of words that are useful for grasping the topic and the eigenvector centrality of the important words in the topic is high. This indicates that text mining techniques can be applied to research on content analysis of trade claims for statistical analysis. Originality/value - Firstly, the validity of the text mining technique in the study of trade claim cases is confirmed. Prior studies on trade claims have relied on traditional approach. Secondly, this study has an originality in that it is an attempt to quantitatively study the trade claim cases, whereas prior trade claim cases were mainly studied via qualitative methods. Lastly, this study shows that the use of the text mining can lower the barrier for acquiring information from a large amount of digitalized text.
Purpose: This study was designed to analyze the behavioral change of knowledge structures and the trends of research topics in the quality management field. Methods: The network structure and knowledge structure of the words were visualized in map form using co-word analysis, cluster analysis and strategic diagram. Results: Summarizing the research results obtained in this study are as follows. First, the word network derived from co-occurrence matrix had 106 nodes and 5,314 links and its density was analyzed to 0.95. Average betweenness centrality of word network was 2.37. In addition, average closeness centrality and average eigenvector centrality of word network were 0.01. Second, by applying optimal criteria of cluster decision and K-means algorithm to word co-occurrence matrix, 106 words were grouped into seven clusters such as standard & efficiency, product design, reliability, control chart, quality model, 6 sigma, and service quality. Conclusion: According to the results of strategic diagram analysis over time, the traditional research topics of quality management field related to reliability, 6 sigma, control chart topics in the third quadrant were revealed to be declined for their study importance. Research topics related to product design and customer satisfaction were found to be an important research topic over analysis periods. Research topic related to management innovation was emerging state and the scope of research topics related to process model was extended to research topics with system performance. Research topic related to service quality located in the first quadrant was analyzed as the key research topic.
Many important terminologies in biomedical text are expressed as abbreviations or acronyms. We newly suggest a semantic link topic model based on the concepts of topic and dependency link to disambiguate biomedical abbreviations and cluster long form variants of abbreviations which refer to the same senses. This model is a generative model inspired by the latent Dirichlet allocation (LDA) topic model, in which each document is viewed as a mixture of topics, with each topic characterized by a distribution over words. Thus, words of a document are generated from a hidden topic structure of a document and the topic structure is inferred from observable word sequences of document collections. In this study, we allow two distinct word generation to incorporate semantic dependencies between words, particularly between expansions (long forms) of abbreviations and their sentential co-occurring words. Besides topic information, the semantic dependency between words is defined as a link and a new random parameter for the link presence is assigned to each word. As a result, the most probable expansions with respect to abbreviations of a given abstract are decided by word-topic distribution, document-topic distribution, and word-link distribution estimated from document collection though the semantic dependency link topic model. The abstracts retrieved from the MEDLINE Entrez interface by the query relating 22 abbreviations and their 186 expansions were used as a data set. The link topic model correctly predicted expansions of abbreviations with the accuracy of 98.30%.
Journal of the Korean BIBLIA Society for library and Information Science
/
v.26
no.4
/
pp.245-262
/
2015
As the topics of general education in universities become more diverse, it is not an easy task to identify the topics of general education courses. This study aims to identify and visualize the topics of A university's general education courses using informetric analysis methods. 214 syllabi were collected and titles, course introduction, goals, and weekly plans were analyzed. 278 topic words were extracted from the data set and grouped into 8 clusters. In the network analysis, topic clusters were divided into two areas, personal and social. Personal area has 14 sub-topic clusters and social area has 11 sub-topic clusters. In personal area, 'language', 'science', and 'personality' were major topic clusters. In social area, 'multi-culture' cluster was the core cluster with connected to four other clusters. The topic network generated in this study can be used for the university and the university library to enhance general education or to develop collections for general education.
Journal of Information Science Theory and Practice
/
v.2
no.4
/
pp.31-48
/
2014
The proliferation of many interactive Topic Detection and Tracking (iTDT) systems has motivated researchers to design systems that can track and detect news better. iTDT focuses on user interaction, user evaluation, and user interfaces. Recently, increasing effort has been devoted to user interfaces to improve TDT systems by investigating not just the user interaction aspect but also user and task oriented evaluation. This study investigates the combination of the bag of words and named entities approaches implemented in the iTDT interface, called Interactive Event Tracking (iEvent), including what TDT tasks these approaches facilitate. iEvent is composed of three components, which are Cluster View (CV), Document View (DV), and Term View (TV). User experiments have been carried out amongst journalists to compare three settings of iEvent: Setup 1 and Setup 2 (baseline setups), and Setup 3 (experimental setup). Setup 1 used bag of words and Setup 2 used named entities, while Setup 3 used a combination of bag of words and named entities. Journalists were asked to perform TDT tasks: Tracking and Detection. Findings revealed that the combination of bag of words and named entities approaches generally facilitated the journalists to perform well in the TDT tasks. This study has confirmed that the combination approach in iTDT is useful and enhanced the effectiveness of users' performance in performing the TDT tasks. It gives suggestions on the features with their approaches which facilitated the journalists in performing the TDT tasks.
Park, Sun;Lee, Yeon-Woo;Jeong, Min-A;Lee, Seong-Ro
Journal of the Institute of Electronics Engineers of Korea SP
/
v.49
no.2
/
pp.45-52
/
2012
This paper proposes a new enhancing document clustering method using the important terms of cluster and the wikipedia. The proposed method can well represent the concept of cluster topics by means of selecting the important terms in cluster by the semantic features of NMF. It can solve the problem of "bags of words" to be not considered the meaningful relationships between documents and clusters, which expands the important terms of cluster by using of the synonyms of wikipedia. Also, it can improve the quality of document clustering which uses the expanded cluster important terms to refine the initial cluster by re-clustering. The experimental results demonstrate that the proposed method achieves better performance than other document clustering methods.
Proceedings of the Korea Information Processing Society Conference
/
2011.04a
/
pp.1538-1541
/
2011
본 논문은 군집 주제의 유의어와 유사도를 이용하여 문서군집의 성능을 향상시키는 방법을 제안한다. 제안된 방법은 비음수행렬분해의 의미특징을 이용하여 군집 주제(topic)의 용어들을 선택함으로서 문서 군집 집합의 내부구조를 잘 표현할 수 있으며, 군집 주제의 용어들에 워드넷의 유의어를 사용하여서 확장함으로써 문서를 용어집합(bag-of-words)으로 표현하는 문제를 해결할 수 있다. 또한 확장된 군집 주제의 용어와 문서집합에 코사인 유사도를 이용하여서 군집의 주제에 적합한 문서를 잘 군집하여서 성능을 높일 수 있다. 실험결과 제안방법을 적용한 문서군집방법이 다른 문서군집 방법에 비하여 좋은 성능을 보인다.
Park, Sun;Lee, Seong Ho;Park, Hee Man;Kim, Won Ju;Kim, Dong Jin;Chandra, Abel;Lee, Seong Ro
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2012.10a
/
pp.392-393
/
2012
This paper proposes a new document clustering method using clustering and Wikipedia. The proposed method can well represent the concept of cluster topics by means of NMF. It can solve the problem of "bags of words" to be not considered the meaningful relationships between documents and clusters, which expands the important terms of cluster by using of the synonyms of Wikipedia. The experimental results demonstrate that the proposed method achieves better performance than other document clustering methods.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.