• Title/Summary/Keyword: Clouds

Search Result 1,006, Processing Time 0.025 seconds

Identity-Exchange based Privacy Preserving Mechanism in Vehicular Networks (차량 네트워크에서 신원교환을 통해 프라이버시를 보호하는 방법)

  • Hussain, Rasheed;Oh, Heekuck
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.24 no.6
    • /
    • pp.1147-1157
    • /
    • 2014
  • Intelligent transportation system (ITS) is realized through a highly ephemeral network, i.e. vehicular ad hoc network (VANET) which is on its way towards the deployment stage, thanks to the advancements in the automobile and communication technologies. However, it has not been successful, at least to date, to install the technology in the mass of vehicles due to security and privacy challenges. Besides, the users of such technology do not want to put their privacy at stake as a result of communication with peer vehicles or with the infrastructure. Therefore serious privacy measures should be taken before bringing this technology to the roads. To date, privacy issues in ephemeral networks in general and in VANET in particular, have been dealt with through various approaches. So far, multiple pseudonymous approach is the most prominent approach. However, recently it has been found out that even multiple pseudonyms cannot protect the privacy of the user and profilation is still possible even if different pseudonym is used with every message. Therefore, another privacy-aware mechanism is essential in vehicular networks. In this paper, we propose a novel identity exchange mechanism to preserve conditional privacy of the users in VANET. Users exchange their pseudonyms with neighbors and then use neighbors' pseudonyms in their own messages. To this end, our proposed scheme conditionally preserves the privacy where the senders of the message can be revoked by the authorities in case of any dispute.

Implementation of a DB-Based Virtual File System for Lightweight IoT Clouds (경량 사물 인터넷 클라우드를 위한 DB 기반 가상 파일 시스템 구현)

  • Lee, Hyung-Bong;Kwon, Ki-Hyeon
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.3 no.10
    • /
    • pp.311-322
    • /
    • 2014
  • IoT(Internet of Things) is a concept of connected internet pursuing direct access to devices or sensors in fused environment of personal, industrial and public area. In IoT environment, it is possible to access realtime data, and the data format and topology of devices are diverse. Also, there are bidirectional communications between users and devices to control actuators in IoT. In this point, IoT is different from the conventional internet in which data are produced by human desktops and gathered in server systems by way of one-sided simple internet communications. For the cloud or portal service of IoT, there should be a file management framework supporting systematic naming service and unified data access interface encompassing the variety of IoT things. This paper implements a DB-based virtual file system maintaining attributes of IoT things in a UNIX-styled file system view. Users who logged in the virtual shell are able to explore IoT things by navigating the virtual file system, and able to access IoT things directly via UNIX-styled file I O APIs. The implemented virtual file system is lightweight and flexible because it maintains only directory structure and descriptors for the distributed IoT things. The result of a test for the virtual shell primitives such as mkdir() or chdir() shows the smooth functionality of the virtual file system, Also, the exploring performance of the file system is better than that of Window file system in case of adopting a simple directory cache mechanism.

Missions and User Requirements of the 2nd Geostationary Ocean Color Imager (GOCI-II) (제2호 정지궤도 해양탑재체(GOCI-II)의 임무 및 요구사양)

  • Ahn, Yu-Hwan;Ryu, Joo-Hyung;Cho, Seong-Ick;Kim, Suk-Hwan
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.2
    • /
    • pp.277-285
    • /
    • 2010
  • Geostationary Ocean Color Imager(GOCI-I), the world's first space-borne ocean color observation geostationary satellite, will be launched on June 2010. Development of GOCI-I took about 6 years, and its expected lifetime is about 7 years. The mission and user requirements of GOCI-II are required to be defined at this moment. Because baseline of the main mission of GOCI-II must be defined during the development time and early operational period of GOCI-I. The main difference between these missions is the global-monitoring capability of GOCI-II, which will meet the necessity of the monitoring and research on climate change in the long-term. The user requirements of GOCI-II will have higher spatial resolution, $250m{\times}250m$, and 12 spectral bands to fulfill GOCI-I's user request, which could not be implemented on GOCI-I for technical reasons. A dedicated panchromatic band will be added for the nighttime observation to obtain fishery information. GOCI-II will have a new capability, supporting user-definable observation requests such as clear sky area without clouds and special-event areas, etc. This will enable higher applicability of GOCI-II products. GOCI-II will perform observations 8 times daily, the same as GOCI-I's. Additionally, daily global observation once or twice daily is planned for GOCI-II. In this paper, we present an improved development and organization structure to solve the problems that have emerged so far. The hardware design of the GOCI-II will proceed in conjunction with domestic or foreign space agencies.

On the Diurnal Variation of Cloudiness over the Weatern Pacific by Using GMS-IR Data (GMS-IR 자료를 이용한 서태평양에서의 운량 일변동에 관한 연구)

  • 김영섭;한경수
    • Korean Journal of Remote Sensing
    • /
    • v.13 no.1
    • /
    • pp.1-12
    • /
    • 1997
  • The western equatorial Pacific Ocean, where sea surface temperature is the warmest on the globe, is characterized by numerous convective systems and large annual precipitation. In this region, the cloudiness data with tops higher than 8km level obtained from the GMS-IR data are used to investigate the diurnal variation of cloudiness. The amplitude and phase of diurnal and semi-diurnal cycles are mainly investigated to examine details on the temporal and spatial structure of clouds. Cloudiness variation has typical cycles and each cycle is associated with the air-sea interactive phenomena. Spectral analysis on the cloudiness time series data indicates that 30-60 day, 17-20day, 7-8 day, diurnal and semi diurnal cycle are peaked. During Northern Winter and Southern Summer, the large cloudiness exsists over New Guinea, the adjacent seas of North Australia, and the open oceanic regions east of $160^{\circ}$E. Cloudiness diurnal variability over the lands and their adjacent seas is about 2.0 times larger than that over the open sea regions. That may be due to the difference of specific heat between the land and sea. The maximum and minimum cloudiness appeared at 18:00 and 09:00 hours over the land, and at noon and 21:00 hours over the sea, respectively. The amplitude of diurnal component over the land is 4,7 times larger than that of semi-diurnal component, and 1.5 times over the sea.

Automated Geometric Correction of Geostationary Weather Satellite Images (정지궤도 기상위성의 자동기하보정)

  • Kim, Hyun-Suk;Lee, Tae-Yoon;Hur, Dong-Seok;Rhee, Soo-Ahm;Kim, Tae-Jung
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.4
    • /
    • pp.297-309
    • /
    • 2007
  • The first Korean geostationary weather satellite, Communications, Oceanography and Meteorology Satellite (COMS) will be launched in 2008. The ground station for COMS needs to perform geometric correction to improve accuracy of satellite image data and to broadcast geometrically corrected images to users within 30 minutes after image acquisition. For such a requirement, we developed automated and fast geometric correction techniques. For this, we generated control points automatically by matching images against coastline data and by applying a robust estimation called RANSAC. We used GSHHS (Global Self-consistent Hierarchical High-resolution Shoreline) shoreline database to construct 211 landmark chips. We detected clouds within the images and applied matching to cloud-free sub images. When matching visible channels, we selected sub images located in day-time. We tested the algorithm with GOES-9 images. Control points were generated by matching channel 1 and channel 2 images of GOES against the 211 landmark chips. The RANSAC correctly removed outliers from being selected as control points. The accuracy of sensor models established using the automated control points were in the range of $1{\sim}2$ pixels. Geometric correction was performed and the performance was visually inspected by projecting coastline onto the geometrically corrected images. The total processing time for matching, RANSAC and geometric correction was around 4 minutes.

Land Cover Classification of the Korean Peninsula Using Linear Spectral Mixture Analysis of MODIS Multi-temporal Data (MODIS 다중시기 영상의 선형분광혼합화소분석을 이용한 한반도 토지피복분류도 구축)

  • Jeong, Seung-Gyu;Park, Chong-Hwa;Kim, Sang-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.6
    • /
    • pp.553-563
    • /
    • 2006
  • This study aims to produce land-cover maps of Korean peninsula using multi-temporal MODIS (Moderate Resolution Imaging Spectroradiometer) imagery. To solve the low spatial resolution of MODIS data and enhance classification accuracy, Linear Spectral Mixture Analysis (LSMA) was employed. LSMA allowed to determine the fraction of each surface type in a pixel and develop vegetation, soil and water fraction images. To eliminate clouds, MVC (Maximum Value Composite) was utilized for vegetation fraction and MinVC (Minimum Value Composite) for soil fraction image respectively. With these images, using ISODATA unsupervised classifier, southern part of Korean peninsula was classified to low and mid level land-cover classes. The results showed that vegetation and soil fraction images reflected phenological characteristics of Korean peninsula. Paddy fields and forest could be easily detected in spring and summer data of the entire peninsula and arable land in North Korea. Secondly, in low level land-cover classification, overall accuracy was 79.94% and Kappa value was 0.70. Classification accuracy of forest (88.12%) and paddy field (85.45%) was higher than that of barren land (60.71%) and grassland (57.14%). In midlevel classification, forest class was sub-divided into deciduous and conifers and field class was sub-divided into paddy and field classes. In mid level, overall accuracy was 82.02% and Kappa value was 0.6986. Classification accuracy of deciduous (86.96%) and paddy (85.38%) were higher than that of conifers (62.50%) and field (77.08%).

Sensitivity Analysis of IR Aerosol Detection Algorithm (적외선 채널을 이용한 에어로솔 탐지의 경계값 및 민감도 분석)

  • Ha, Jong-Sung;Lee, Hyun-Jin;Kim, Jae-Hwan
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.6
    • /
    • pp.507-518
    • /
    • 2006
  • The radiation at $11{\mu}m$ absorbed more than at $12{\mu}m$ when aerosols is loaded in the atmosphere, whereas it will be the other way around when cloud is present. The difference of the two channels provides an opportunity to detect aerosols such as Yellow Sand even with the presence of clouds and at night. However problems associated with this approach arise because the difference can be affected by various atmospheric and surface conditions. In this paper, we has analyzed how the threshold and sensitivity of the brightness temperature difference between two channel (BTD) vary with respect to the conditions in detail. The important finding is that the threshold value for the BTD distinguishing between aerosols and cloud is $0.8^{\circ}K$ with the US standard atmosphere, which is greater than the typical value of $0^{\circ}K$. The threshold and sensitivity studies for the BTD show that solar zenith angle, aerosols altitude, surface reflectivity, and atmospheric temperature profile marginally affect the BTD. However, satellite zenith angle, surface temperature along with emissivity, and vertical profile of water vapor are strongly influencing on the BTD, which is as much as of about 50%. These results strongly suggest that the aerosol retrieval with the BTD method must be cautious and the outcomes must be carefully calibrated with respect to the sources of the error.

Multi-Hop Vehicular Cloud Construction and Resource Allocation in VANETs (VANET 망에서 다중 홉 클라우드 형성 및 리소스 할당)

  • Choi, Hyunseok;Nam, Youngju;Lee, Euisin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.8 no.11
    • /
    • pp.263-270
    • /
    • 2019
  • Vehicular cloud computing is a new emerging technology that can provide drivers with cloud services to enable various vehicular applications. A vehicular cloud is defined as a set of vehicles that share their own resources. Vehicles should collaborate with each other to construct vehicular clouds through vehicle-to-vehicle communications. Since collaborating vehicles to construct the vehicular cloud have different speeds, directions and locations respectively, the vehicular cloud is constructed in multi-hop communication range. Due to intermittent wireless connectivity and low density of vehicles with the limited resources, the construction of vehicular cloud with multi-hop communications has become challenging in vehicular environments in terms of the service success ratio, the service delay, and the transmitted packet number. Thus, we propose a multi-hop vehicular cloud construction protocol that increases the service success ratio and decreases the service delay and the transmitted packet number. The proposed protocol uses a connection time-based intermediate vehicle selection scheme to reduce the cloud failure probability of multi-hop vehicular cloud. Simulation results conducted in various environments verify that the proposed protocol achieves better performance than the existing protocol.

Analysis of the Cloud Removal Effect of Sentinel-2A/B NDVI Monthly Composite Images for Rice Paddy and High-altitude Cabbage Fields (논과 고랭지 배추밭 대상 Sentinel-2A/B 정규식생지수 월 합성영상의 구름 제거 효과 분석)

  • Eun, Jeong;Kim, Sun-Hwa;Kim, Taeho
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1545-1557
    • /
    • 2021
  • Crops show sensitive spectral characteristics according to their species and growth conditions and although frequent observation is required especially in summer, it is difficult to utilize optical satellite images due to the rainy season. To solve this problem, Constrained Cloud-Maximum Normalized difference vegetation index Composite (CC-MNC) algorithm was developed to generate periodic composite images with minimal cloud effect. In thisstudy, using this method, monthly Sentinel-2A/B Normalized Difference Vegetation Index (NDVI) composite images were produced for paddies and high-latitude cabbage fields from 2019 to 2021. In August 2020, which received 200mm more precipitation than other periods, the effect of clouds, was also significant in MODIS NDVI 16-day composite product. Except for this period, the CC-MNC method was able to reduce the cloud ratio of 45.4% of the original daily image to 14.9%. In the case of rice paddy, there was no significant difference between Sentinel-2A/B and MODIS NDVI values. In addition, it was possible to monitor the rice growth cycle well even with a revisit cycle 5 days. In the case of high-latitude cabbage fields, Sentinel-2A/B showed the short growth cycle of cabbage well, but MODIS showed limitations in spatial resolution. In addition, the CC-MNC method showed that cloud pixels were used for compositing at the harvest time, suggesting that the View Zenith Angle (VZA) threshold needsto be adjusted according to the domestic region.

Waterbody Detection from Sentinel-2 Images Using NDWI: A Case of Hwanggang Dam in North Korea (Sentinel-2 기반 NDWI를 이용한 수체 탐지 연구: 북한 황강댐을 사례로)

  • Kye, Changwoo;Shin, Dae-Kyu;Yi, Jonghyuk;Kim, Jingyeom
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1207-1214
    • /
    • 2021
  • In thisletter, we developed technology which can exclude effect of cloudsto perform remote waterbody detection based on Sentinel-2 optical satellite imagery to calculate the area of ungauged reservoirs and applied to the Hwanggang dam reservoir, a representative ungauged reservoir, to verify usability. The remote waterbody detection technology calculates the cloud blocking ratio by comparing the cloud boundary in the Sentinel-2 imagery and the reservoir boundary first. Next, itselects data whose cloud blocking ratio does not exceed a specific value and calculates NDWI (Normalized Difference Water Index) with selected imagery. In last, it calculatesthe area of the reservoir by counting the number of grids which have NDWI value considered as waterbody within the boundary of the target reservoir and correcting with cloud blocking ratio. To determine cloud blocking ratio threshold forselecting image, we performed the area calculation of Hwanggang dam reservoir from July 2018 to October 2021. As a result, when the cloud blocking ratio threshold wasset 10%, we confirmed that the result with large error due to clouds were filtered well and obtained 114 results that can show changes in Hwanggang dam reservoir area among 220 images.