• 제목/요약/키워드: Cloud-Service

Search Result 1,325, Processing Time 0.031 seconds

Implementation of AWS-based deep learning platform using streaming server and performance comparison experiment (스트리밍 서버를 이용한 AWS 기반의 딥러닝 플랫폼 구현과 성능 비교 실험)

  • Yun, Pil-Sang;Kim, Do-Yun;Jeong, Gu-Min
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.6
    • /
    • pp.591-596
    • /
    • 2019
  • In this paper, we implemented a deep learning operation structure with less influence of local PC performance. In general, the deep learning model has a large amount of computation and is heavily influenced by the performance of the processing PC. In this paper, we implemented deep learning operation using AWS and streaming server to reduce this limitation. First, deep learning operations were performed on AWS so that deep learning operation would work even if the performance of the local PC decreased. However, with AWS, the output is less real-time relative to the input when computed. Second, we use streaming server to increase the real-time of deep learning model. If the streaming server is not used, the real-time performance is poor because the images must be processed one by one or by stacking the images. We used the YOLO v3 model as a deep learning model for performance comparison experiments, and compared the performance of local PCs with instances of AWS and GTX1080, a high-performance GPU. The simulation results show that the test time per image is 0.023444 seconds when using the p3 instance of AWS, which is similar to the test time per image of 0.027099 seconds on a local PC with the high-performance GPU GTX1080.

A Study of 3D Modeling of Compressed Urban LiDAR Data Using VRML (VRML을 이용한 도심지역 LiDAR 압축자료의 3차원 표현)

  • Jang, Young-Woon;Choi, Yun-Woong;Cho, Gi-Sung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.2
    • /
    • pp.3-8
    • /
    • 2011
  • Recently, the demand for enterprise for service map providing and portal site services of a 3D virtual city model for public users has been expanding. Also, accuracy of the data, transfer rate and the update for the update for the lapse of time emerge are considered as more impertant factors, by providing 3D information with the web or mobile devices. With the latest technology, we have seen various 3D data through the web. With the VRML progressing actively, because it can provide a virtual display of the world and all aspects of interaction with web. It offers installation of simple plug-in without extra cost on the web. LiDAR system can obtain spatial data easily and accurately, as supprted by numerous researches and applications. However, in general, LiDAR data is obtained in the form of an irregular point cloud. So, in case of using data without converting, high processor is needed for presenting 2D forms from point data composed of 3D data and the data increase. This study expresses urban LiDAR data in 3D, 2D raster data that was applied by compressing algorithm that was used for solving the problems of large storage space and processing. For expressing 3D, algorithm that converts compressed LiDAR data into code Suited to VRML was made. Finally, urban area was expressed in 3D with expressing ground and feature separately.

A Study of An Efficient Clustering Processing Scheme of Patient Disease Information for Cloud Computing Environment (클라우드 컴퓨팅 환경을 위한 환자 질병 정보의 효율적인 클러스터링 처리 방안에 대한 연구)

  • Jeong, Yoon-Su
    • Journal of Convergence Society for SMB
    • /
    • v.6 no.1
    • /
    • pp.33-38
    • /
    • 2016
  • Disease of patient who visited the hospital can cause different symptoms of the disease, depending on the environment and lifestyle. Recent medical services offered in patients has changed in the environment that can be selected for treatment by analyzing the patient according to the disease symptoms. In this paper, we propose an efficient method to manage disease control because the treatment method may change at any patients suffering from the disease according to the patient conditions by grouping the different treatments to patients for disease information. The proposed scheme has a feature that can be ingested by the patient big disease information, as well as to improve the treatment efficiency of the medical treatment the increase patient satisfaction. The proposed sheme can handle big data by clustering of disease information for patients suffering from diseases such as patient consent small groups. In addition, the proposed scheme has the advantage that can be conveniently accessed via a particular keyword, the treatment method according to patient disease information. The experimental results, the proposed method has been improved by 23% in terms of efficiency compared to conventional techniques, disease management time is gained 11.3% improved results. Medical service user satisfaction seen from the survey is to obtain a high 31.5% results.

Analysis on Trend of Study Related to Computational Thinking Using Topic Modeling (토픽 모델링을 이용한 컴퓨팅 사고력 관련 연구 동향 분석)

  • Moon, Seong-Yun;Song, Ki-Sang
    • Journal of The Korean Association of Information Education
    • /
    • v.23 no.6
    • /
    • pp.607-619
    • /
    • 2019
  • As software education was introduced through the 2015 revised curriculum, various research activities have been carried out to improve the computational thinking of learners beyond the existing ICT literacy and software utilization education. With this change, the purpose of this study is to examine the research trends of various research activities related to computational thinking which is emphasized in software education. To this end, we extracted the key words from 190 papers related to computational thinking subject published from January 2014 to September 2019, and conducted frequency analysis, word cloud, connection centrality, and topic modeling analysis on the words. As a result of the topical modeling analysis, we found that the main studies so far have included studies on 'computational thinking education program', 'computational thinking education for pre-service teacher education', 'robot utilization education for computational thinking', 'assessment of computational thinking', and 'computational thinking connected education'. Through this research method, it was possible to grasp the research trend related to computational thinking that has been conducted mainly up to now, and it is possible to know which part of computational thinking education is more important to researchers.

Performance Analysis and Improvement of WANProxy (WANProxy의 성능 분석 및 개선)

  • Kim, Haneul;Ji, Seungkyu;Chung, Kyusik
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.3
    • /
    • pp.45-58
    • /
    • 2020
  • In the current trend of increasing network traffic due to the popularization of cloud service and mobile devices, WAN bandwidth is very low compared to LAN bandwidth. In a WAN environment, a WAN optimizer is needed to overcome performance problems caused by transmission protocol, packet loss, and network bandwidth limitations. In this paper, we analyze the data deduplication algorithm of WANProxy, an open source WAN optimizer, and evaluate its performance in terms of network latency and WAN bandwidth. Also, we evaluate the performance of the two-stage compression method of WANProxy and Zstandard. We propose a new method to improve the performance of WANProxy by revising its data deduplication algorithm and evaluate its performance improvement. We perform experiments using 12 data files of Silesia with a data segment size of 2048 bytes. Experimental results show that the average compression rate by WANProxy is 150.6, and the average network latency reduction rates by WANProxy are 95.2% for a 10 Mbps WAN environment and 60.7% for a 100 Mbps WAN environment, respectively. Compared with WANProxy, the two-stage compression of WANProxy and Zstandard increases the average compression rate by 33%. However, it increases the average network latency by 2.1% for a 10 Mbps WAN environment and 5.27% for a 100 Mbps WAN environment, respectively. Compared with WANProxy, our proposed method increases the average compression rate by 34.8% and reduces the average network latency by 13.8% for a 10 Mbps WAN and 12.9% for a 100 Mbps WAN, respectively. Performance analysis results of WANProxy show that its performance improvement in terms of network latency and WAN bandwidth is excellent in a 10Mbps or less WAN environment while superior in a 100 Mbps WAN environment.

Implementation of Dynamic Situation Authentication System for Accessing Medical Information (의료정보 접근을 위한 동적상황인증시스템의 구현)

  • Ham, Gyu-Sung;Seo, Own-jeong;Jung, Hoill;Joo, Su-Chong
    • Journal of Internet Computing and Services
    • /
    • v.19 no.6
    • /
    • pp.31-40
    • /
    • 2018
  • With the development of IT technology recently, medical information systems are being constructed in an integrated u-health environment through cloud services, IoT technologies, and mobile applications. These kinds of medical information systems should provide the medical staff with authorities to access patients' medical information for emergency status treatments or therapeutic purposes. Therefore, in the medical information systems, the reliable and prompt authentication processes are necessary to access the biometric information and the medical information of the patients in charge of the medical staff. However, medical information systems are accessing with simple and static user authentication mechanism using only medical ID / PWD in the present system environment. For this reason, in this paper, we suggest a dynamic situation authentication mechanism that provides transparency of medical information access including various authentication factors considering patient's emergency status condition and dynamic situation authentication system supporting it. Our dynamic Situation Authentication is a combination of user authentication and mobile device authentication, which includes various authentication factor attributes such as emergency status, role of medical staff, their working hours, and their working positions and so forth. We designed and implemented a dynamic situation authentication system including emergency status decision, dynamic situation authentication, and authentication support DB construction. Finally, in order to verify the serviceability of the suggested dynamic situation authentication system, the medical staffs download the mobile application from the medical information server to the medical staff's own mobile device together with the dynamic situation authentication process and the permission to access medical information to the patient and showed access to medical information.

DNN Model for Calculation of UV Index at The Location of User Using Solar Object Information and Sunlight Characteristics (태양객체 정보 및 태양광 특성을 이용하여 사용자 위치의 자외선 지수를 산출하는 DNN 모델)

  • Ga, Deog-hyun;Oh, Seung-Taek;Lim, Jae-Hyun
    • Journal of Internet Computing and Services
    • /
    • v.23 no.2
    • /
    • pp.29-35
    • /
    • 2022
  • UV rays have beneficial or harmful effects on the human body depending on the degree of exposure. An accurate UV information is required for proper exposure to UV rays per individual. The UV rays' information is provided by the Korea Meteorological Administration as one component of daily weather information in Korea. However, it does not provide an accurate UVI at the user's location based on the region's Ultraviolet index. Some operate measuring instrument to obtain an accurate UVI, but it would be costly and inconvenient. Studies which assumed the UVI through environmental factors such as solar radiation and amount of cloud have been introduced, but those studies also could not provide service to individual. Therefore, this paper proposes a deep learning model to calculate UVI using solar object information and sunlight characteristics to provide an accurate UVI at individual location. After selecting the factors, which were considered as highly correlated with UVI such as location and size and illuminance of sun and which were obtained through the analysis of sky images and solar characteristics data, a data set for DNN model was constructed. A DNN model that calculates the UVI was finally realized by entering the solar object information and sunlight characteristics extracted through Mask R-CNN. In consideration of the domestic UVI recommendation standards, it was possible to accurately calculate UVI within the range of MAE 0.26 compared to the standard equipment in the performance evaluation for days with UVI above and below 8.

Text Mining-Based Analysis of Hyundai Automobile Consumer Satisfaction and Dissatisfaction Factors in the Chinese Market: A Comparison with Other Brands (텍스트 마이닝을 이용한 현대 자동차 중국시장 소비자의 만족 및 불만족 요인 분석 연구: 다른 브랜드와의 비교)

  • Cui Ran;Inyong Nam
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.539-549
    • /
    • 2024
  • This study employed text mining techniques like frequency analysis, word clouds, and LDA topic modeling to assess consumer satisfaction and dissatisfaction with Hyundai Motor Company in the Chinese market, compared to brands such as Toyota, Volkswagen, Buick, and Geely. Focusing on compact vehicles from these brands between 2021 and 2023, this study analyzed customer reviews. The results indicated Hyundai Avante's positive factors, including a long wheelbase. However, it also highlighted dissatisfaction aspects like Manipulate, engine performance, trunk space, chassis and suspension, safety features, quantity and brand of audio speakers, music membership service, separation band, screen reflection, CarLife, and map services. Addressing these issues could significantly enhance Hyundai's competitiveness in the Chinese market. Previous studies mainly focused on literature research and surveys, which only revealed consumer perceptions limited to the variables set by the researchers. This study, through text mining and comparing various car brands, aims to gain a deeper understanding of market trends and consumer preferences, providing useful information for marketing strategies of Hyundai and other brands in the Chinese market.

FBcastS: An Information System Leveraging the K-Maryblyt Forecasting Model (K-Maryblyt 모델 구동을 위한 FBcastS 정보시스템 개발)

  • Mun-Il Ahn;Hyeon-Ji Yang;Eun Woo Park;Yong Hwan Lee;Hyo-Won Choi;Sung-Chul Yun
    • Research in Plant Disease
    • /
    • v.30 no.3
    • /
    • pp.256-267
    • /
    • 2024
  • We have developed FBcastS (Fire Blight Forecasting System), a cloud-based information system that leverages the K-Maryblyt forecasting model. The FBcastS provides an optimal timing for spraying antibiotics to prevent flower infection caused by Erwinia amylovora and forecasts the onset of disease symptoms to assist in scheduling field scouting activities. FBcastS comprises four discrete subsystems tailored to specific functionalities: meteorological data acquisition and processing, execution of the K-Maryblyt model, distribution of web-based information, and dissemination of spray timing notifications. The meteorological data acquisition subsystem gathers both observed and forecasted weather data from 1,583 sites across South Korea, including 761 apple or pear orchards where automated weather stations are installed for fire blight forecast. This subsystem also performs post-processing tasks such as quality control and data conversion. The model execution subsystem operates the K-Maryblyt model and stores its results in a database. The web-based service subsystem offers an array of internet-based services, including weather monitoring, mobile services for forecasting fire blight infection and symptoms, and nationwide fire blight monitoring. The final subsystem issues timely notifications of fire blight spray timing alert to growers based on forecasts from the K-Maryblyt model, blossom status, pesticide types, and field conditions, following guidelines set by the Rural Development Administration. FBcastS epitomizes a smart agriculture internet of things (IoT) by utilizing densely collected data with a spatial resolution of approximately 4.25 km to improve the accuracy of fire blight forecasts. The system's internet-based services ensure high accessibility and utility, making it a vital tool in data-driven smart agricultural practices.

Development Process for User Needs-based Chatbot: Focusing on Design Thinking Methodology (사용자 니즈 기반의 챗봇 개발 프로세스: 디자인 사고방법론을 중심으로)

  • Kim, Museong;Seo, Bong-Goon;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.3
    • /
    • pp.221-238
    • /
    • 2019
  • Recently, companies and public institutions have been actively introducing chatbot services in the field of customer counseling and response. The introduction of the chatbot service not only brings labor cost savings to companies and organizations, but also enables rapid communication with customers. Advances in data analytics and artificial intelligence are driving the growth of these chatbot services. The current chatbot can understand users' questions and offer the most appropriate answers to questions through machine learning and deep learning. The advancement of chatbot core technologies such as NLP, NLU, and NLG has made it possible to understand words, understand paragraphs, understand meanings, and understand emotions. For this reason, the value of chatbots continues to rise. However, technology-oriented chatbots can be inconsistent with what users want inherently, so chatbots need to be addressed in the area of the user experience, not just in the area of technology. The Fourth Industrial Revolution represents the importance of the User Experience as well as the advancement of artificial intelligence, big data, cloud, and IoT technologies. The development of IT technology and the importance of user experience have provided people with a variety of environments and changed lifestyles. This means that experiences in interactions with people, services(products) and the environment become very important. Therefore, it is time to develop a user needs-based services(products) that can provide new experiences and values to people. This study proposes a chatbot development process based on user needs by applying the design thinking approach, a representative methodology in the field of user experience, to chatbot development. The process proposed in this study consists of four steps. The first step is 'setting up knowledge domain' to set up the chatbot's expertise. Accumulating the information corresponding to the configured domain and deriving the insight is the second step, 'Knowledge accumulation and Insight identification'. The third step is 'Opportunity Development and Prototyping'. It is going to start full-scale development at this stage. Finally, the 'User Feedback' step is to receive feedback from users on the developed prototype. This creates a "user needs-based service (product)" that meets the process's objectives. Beginning with the fact gathering through user observation, Perform the process of abstraction to derive insights and explore opportunities. Next, it is expected to develop a chatbot that meets the user's needs through the process of materializing to structure the desired information and providing the function that fits the user's mental model. In this study, we present the actual construction examples for the domestic cosmetics market to confirm the effectiveness of the proposed process. The reason why it chose the domestic cosmetics market as its case is because it shows strong characteristics of users' experiences, so it can quickly understand responses from users. This study has a theoretical implication in that it proposed a new chatbot development process by incorporating the design thinking methodology into the chatbot development process. This research is different from the existing chatbot development research in that it focuses on user experience, not technology. It also has practical implications in that companies or institutions propose realistic methods that can be applied immediately. In particular, the process proposed in this study can be accessed and utilized by anyone, since 'user needs-based chatbots' can be developed even if they are not experts. This study suggests that further studies are needed because only one field of study was conducted. In addition to the cosmetics market, additional research should be conducted in various fields in which the user experience appears, such as the smart phone and the automotive market. Through this, it will be able to be reborn as a general process necessary for 'development of chatbots centered on user experience, not technology centered'.