• Title/Summary/Keyword: Cloud point

Search Result 853, Processing Time 0.025 seconds

Massive 3D Point Cloud Visualization by Generating Artificial Center Points from Multi-Resolution Cube Grid Structure (다단계 정육면체 격자 기반의 가상점 생성을 통한 대용량 3D point cloud 가시화)

  • Yang, Seung-Chan;Han, Soo Hee;Heo, Joon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.4
    • /
    • pp.335-342
    • /
    • 2012
  • 3D point cloud is widely used in Architecture, Civil Engineering, Medical, Computer Graphics, and many other fields. Due to the improvement of 3D laser scanner, a massive 3D point cloud whose gigantic file size is bigger than computer's memory requires efficient preprocessing and visualization. We suggest a data structure to solve the problem; a 3D point cloud is gradually subdivided by arbitrary-sized cube grids structure and corresponding point cloud subsets generated by the center of each grid cell are achieved while preprocessing. A massive 3D point cloud file is tested through two algorithms: QSplat and ours. Our algorithm, grid-based, showed slower speed in preprocessing but performed faster rendering speed comparing to QSplat. Also our algorithm is further designed to editing or segmentation using the original coordinates of 3D point cloud.

Fusing Algorithm for Dense Point Cloud in Multi-view Stereo (Multi-view Stereo에서 Dense Point Cloud를 위한 Fusing 알고리즘)

  • Han, Hyeon-Deok;Han, Jong-Ki
    • Journal of Broadcast Engineering
    • /
    • v.25 no.5
    • /
    • pp.798-807
    • /
    • 2020
  • As technologies using digital camera have been developed, 3D images can be constructed from the pictures captured by using multiple cameras. The 3D image data is represented in a form of point cloud which consists of 3D coordinate of the data and the related attributes. Various techniques have been proposed to construct the point cloud data. Among them, Structure-from-Motion (SfM) and Multi-view Stereo (MVS) are examples of the image-based technologies in this field. Based on the conventional research, the point cloud data generated from SfM and MVS may be sparse because the depth information may be incorrect and some data have been removed. In this paper, we propose an efficient algorithm to enhance the point cloud so that the density of the generated point cloud increases. Simulation results show that the proposed algorithm outperforms the conventional algorithms objectively and subjectively.

A Progressive Rendering Method to Enhance the Resolution of Point Cloud Contents (포인트 클라우드 콘텐츠 해상도 향상을 위한 점진적 렌더링 방법)

  • Lee, Heejea;Yun, Junyoung;Kim, Jongwook;Kim, Chanhee;Park, Jong-Il
    • Journal of Broadcast Engineering
    • /
    • v.26 no.3
    • /
    • pp.258-268
    • /
    • 2021
  • Point cloud content is immersive content that represents real-world objects with three-dimensional (3D) points. In the process of acquiring point cloud data or encoding and decoding point cloud data, the resolution of point cloud content could be degraded. In this paper, we propose a method of progressively enhancing the resolution of sequential point cloud contents through inter-frame registration. To register a point cloud, the iterative closest point (ICP) algorithm is commonly used. Existing ICP algorithms can transform rigid bodies, but there is a disadvantage that transformation is not possible for non-rigid bodies having motion vectors in different directions locally, such as point cloud content. We overcome the limitations of the existing ICP-based method by registering regions with motion vectors in different directions locally between the point cloud content of the current frame and the previous frame. In this manner, the resolution of the point cloud content with geometric movement is enhanced through the process of registering points between frames. We provide four different point cloud content that has been enhanced with our method in the experiment.

Three-Dimensional Face Point Cloud Smoothing Based on Modified Anisotropic Diffusion Method

  • Wibowo, Suryo Adhi;Kim, Sungshin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.2
    • /
    • pp.84-90
    • /
    • 2014
  • This paper presents the results of three-dimensional face point cloud smoothing based on a modified anisotropic diffusion method. The focus of this research was to obtain a 3D face point cloud with a smooth texture and number of vertices equal to the number of vertices input during the smoothing process. Different from other methods, such as using a template D face model, modified anisotropic diffusion only uses basic concepts of convolution and filtering which do not require a complex process. In this research, we used 6D point cloud face data where the first 3D point cloud contained data pertaining to noisy x-, y-, and z-coordinate information, and the other 3D point cloud contained data regarding the red, green, and blue pixel layers as an input system. We used vertex selection to modify the original anisotropic diffusion. The results show that our method has improved performance relative to the original anisotropic diffusion method.

Development of Classification Technique of Point Cloud Data Using Color Information of UAV Image

  • Song, Yong-Hyun;Um, Dae-Yong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.4
    • /
    • pp.303-312
    • /
    • 2017
  • This paper indirectly created high density point cloud data using unmanned aerial vehicle image. Then, we tried to suggest new concept of classification technique where particular objects from point cloud data can be selectively classified. For this, we established the classification technique that can be used as search factor in classifying color information in point cloud data. Then, using suggested classification technique, we implemented object classification and analyzed classification accuracy by relative comparison with self-created proof resource. As a result, the possibility of point cloud data classification was observable using the image's information. Furthermore, it was possible to classify particular object's point cloud data in high classification accuracy.

Template-Based Reconstruction of Surface Mesh Animation from Point Cloud Animation

  • Park, Sang Il;Lim, Seong-Jae
    • ETRI Journal
    • /
    • v.36 no.6
    • /
    • pp.1008-1015
    • /
    • 2014
  • In this paper, we present a method for reconstructing a surface mesh animation sequence from point cloud animation data. We mainly focus on the articulated body of a subject - the motion of which can be roughly described by its internal skeletal structure. The point cloud data is assumed to be captured independently without any inter-frame correspondence information. Using a template model that resembles the given subject, our basic idea for reconstructing the mesh animation is to deform the template model to fit to the point cloud (on a frame-by-frame basis) while maintaining inter-frame coherence. We first estimate the skeletal motion from the point cloud data. After applying the skeletal motion to the template surface, we refine it to fit to the point cloud data. We demonstrate the viability of the method by applying it to reconstruct a fast dancing motion.

Point cloud removing and rearrangement for reducing bump on 3D mesh (3D Mesh 의 bump 를 감소시키기 위한 Point Cloud 제거 및 재배열 알고리즘)

  • Cha, Sangguk;Han, Jong-Ki
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.266-268
    • /
    • 2020
  • 본 논문에서는 dense point cloud 의 평면영역에서 발생하는 bump 을 줄이기 위한 방법을 제시한다. 이상적인 point cloud 의 평면영역에서 점의 위치의 차이가 균일하다는 특성을 이용하여 점의 위치를 재구성하는 방식을 제시한다. 또한 더 작은 개수의 점으로 물체를 나타낼 수 있으며, 더 작은 잡음이 나타나는 sparse point cloud 의 성질을 고려하여 dense point cloud 의 점의 개수 또한 감소시킨다. 따라서 제안하는 알고리즘을 적용하여 dense point cloud 의 잡음을 감소시키면 평면영역의 bump 감소 및 점 개수의 감소를 통한 데이터 전송 시 더 작은 크기로 보낼 수 있다.

  • PDF

MMT based V3C data packetizing method (MMT 기반 V3C 데이터 패킷화 방안)

  • Moon, Hyeongjun;Kim, Yeonwoong;Park, Seonghwan;Nam, Kwijung;Kim, Kyuhyeon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.836-838
    • /
    • 2022
  • 3D Point Cloud는 3D 콘텐츠를 더욱 실감 나게 표현하기 위한 데이터 포맷이다. Point Cloud 데이터는 3차원 공간상에 존재하는 데이터로 기존의 2D 영상에 비해 거대한 용량을 가지고 있다. 최근 대용량 Point Cloud의 3D 데이터를 압축하기 위해 V-PCC(Video-based Point Cloud Compression)와 같은 다양한 방법이 제시되고 있다. 따라서 Point Cloud 데이터의 원활한 전송 및 저장을 위해서는 V-PCC와 같은 압축 기술이 요구된다. V-PCC는 Point Cloud의 데이터들을 Patch로써 뜯어내고 2D에 Projection 시켜 3D의 영상을 2D 형식으로 변환하고 2D로 변환된 Point Cloud 영상을 기존의 2D 압축 코덱을 활용하여 압축하는 기술이다. 이 V-PCC로 변환된 2D 영상은 기존 2D 영상을 전송하는 방식을 활용하여 네트워크 기반 전송이 가능하다. 본 논문에서는 V-PCC 방식으로 압축한 V3C 데이터를 방송망으로 전송 및 소비하기 위해 MPEG Media Transport(MMT) Packet을 만드는 패킷화 방안을 제안한다. 또한 Server와 Client에서 주고받은 V3C(Visual Volumetric Video Coding) 데이터의 비트스트림을 비교하여 검증한다.

  • PDF

Extraction of Geometric Primitives from Point Cloud Data

  • Kim, Sung-Il;Ahn, Sung-Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2010-2014
    • /
    • 2005
  • Object detection and parameter estimation in point cloud data is a relevant subject to robotics, reverse engineering, computer vision, and sport mechanics. In this paper a software is presented for fully-automatic object detection and parameter estimation in unordered, incomplete and error-contaminated point cloud with a large number of data points. The software consists of three algorithmic modules each for object identification, point segmentation, and model fitting. The newly developed algorithms for orthogonal distance fitting (ODF) play a fundamental role in each of the three modules. The ODF algorithms estimate the model parameters by minimizing the square sum of the shortest distances between the model feature and the measurement points. Curvature analysis of the local quadric surfaces fitted to small patches of point cloud provides the necessary seed information for automatic model selection, point segmentation, and model fitting. The performance of the software on a variety of point cloud data will be demonstrated live.

  • PDF

Deep learning approach to generate 3D civil infrastructure models using drone images

  • Kwon, Ji-Hye;Khudoyarov, Shekhroz;Kim, Namgyu;Heo, Jun-Haeng
    • Smart Structures and Systems
    • /
    • v.30 no.5
    • /
    • pp.501-511
    • /
    • 2022
  • Three-dimensional (3D) models have become crucial for improving civil infrastructure analysis, and they can be used for various purposes such as damage detection, risk estimation, resolving potential safety issues, alarm detection, and structural health monitoring. 3D point cloud data is used not only to make visual models but also to analyze the states of structures and to monitor them using semantic data. This study proposes automating the generation of high-quality 3D point cloud data and removing noise using deep learning algorithms. In this study, large-format aerial images of civilian infrastructure, such as cut slopes and dams, which were captured by drones, were used to develop a workflow for automatically generating a 3D point cloud model. Through image cropping, downscaling/upscaling, semantic segmentation, generation of segmentation masks, and implementation of region extraction algorithms, the generation of the point cloud was automated. Compared with the method wherein the point cloud model is generated from raw images, our method could effectively improve the quality of the model, remove noise, and reduce the processing time. The results showed that the size of the 3D point cloud model created using the proposed method was significantly reduced; the number of points was reduced by 20-50%, and distant points were recognized as noise. This method can be applied to the automatic generation of high-quality 3D point cloud models of civil infrastructures using aerial imagery.