• Title/Summary/Keyword: Cloud meteorological data

Search Result 213, Processing Time 0.027 seconds

Remote Sensing Cloud's Microphysical Properties by Satellite Data

  • Liu, Jian
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1258-1260
    • /
    • 2003
  • Cloud's properties can be showed on different spectral channel. The 0.65${\mu}$m reflectance is mainly function of cloud optical thickness and reflectance of 1.6${\mu}$m is sensitive to cloud phase and particle size distribution. So we can use multi-spectral information to analysis cloud's microphysical properties.

  • PDF

The Parallax Correction to Improve Cloud Location Error of Geostationary Meteorological Satellite Data (정지궤도 기상위성자료의 구름위치오류 개선을 위한 시차보정)

  • Lee, Won-Seok;Kim, Young-Seup;Kim, Do-Hyeong;Chung, Chu-Yong
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.2
    • /
    • pp.99-105
    • /
    • 2011
  • This research presents the correction method to correct the location error of cloud caused by parallax error, and how the method can reduce the position error. The procedure has two steps: first step is to retrieve the corrected satellite zenith angle from the original satellite zenith angle. Second step is to adjust the location of the cloud with azimuth angle and the corrected satellite zenith angle retrieved from the first step. The position error due to parallax error can be as large as 60km in case of 70 degree of satellite zenith angle and 15 km of cloud height. The validation results by MODIS(Moderate-Resolution Imaging Spectrometer) show that the correction method in this study properly adjusts the original cloud position error and can increase the utilization of geostationary satellite data.

Analysis of Trends and Correlations between Measured Horizontal Surface Insolation and Weather Data from 1985 to 2014 (1985년부터 2014년까지의 측정 수평면전일사량과 기상데이터 간의 경향 및 상관성 분석)

  • Kim, Jeongbae
    • Journal of Institute of Convergence Technology
    • /
    • v.9 no.1
    • /
    • pp.31-36
    • /
    • 2019
  • After 30 years of KKP model analysis and extended 30 years of accuracy analysis, the unique correlation and various problems between measured horizontal surface insolation and measured weather data are found in this paper. The KKP model's 10yrs daily total horizontal surface insolation forecasting was averaged about 97.7% on average, and the forecasting accuracy at peak times per day was about 92.1%, which is highly applicable regardless of location and weather conditions nationwide. The daily total solar radiation forecasting accuracy of the modified KKP cloud model was 98.9%, similar to the KKP model, and 93.0% of the forecasting accuracy at the peak time per day. And the results of evaluating the accuracy of calculation for 30 years of KKP model were cloud model 107.6% and cloud model 95.1%. During the accuracy analysis evaluation, this study found that inaccuracies in measurement data of cloud cover should be clearly assessed by the Meteorological Administration.

A Study on the Assimilation of High-Resolution Microwave Humidity Sounder Data for Convective Scale Model at KMA (국지예보모델에서 고해상도 마이크로파 위성자료(MHS) 동화에 관한 연구)

  • Kim, Hyeyoung;Lee, Eunhee;Lee, Seung-Woo;Lee, Yong Hee
    • Atmosphere
    • /
    • v.28 no.2
    • /
    • pp.163-174
    • /
    • 2018
  • In order to assimilate MHS satellite data into the convective scale model at KMA, ATOVS data are reprocessed to utilize the original high-resolution data. And then to improve the preprocessing experiments for cloud detection were performed and optimized to convective-scale model. The experiment which is land scattering index technique added to Observational Processing System to remove contaminated data showed the best result. The analysis fields with assimilation of MHS are verified against with ECMWF analysis fields and fit to other observations including Sonde, which shows improved results on relative humidity fields at sensitive level (850-300 hPa). As the relative humidity of upper troposphere increases, the bias and RMSE of geopotential height are decreased. This improved initial field has a very positive effect on the forecast performance of the model. According to improvement of model field, the Equitable Threat Score (ETS) of precipitation prediction of $1{\sim}20mm\;hr^{-1}$ was increased and this impact was maintained for 27 hours during experiment periods.

Development of Solar-Meteorological Resources Map using One-layer Solar Radiation Model Based on Satellites Data on Korean Peninsula (위성자료 기반의 단층태양복사모델을 이용한 한반도 태양-기상자원지도 개발)

  • Jee, Joonbum;Choi, Youngjean;Lee, Kyutae;Zo, Ilsung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.56.1-56.1
    • /
    • 2011
  • The solar and meteorological resources map is calculated using by one-layer solar radiation model (GWNU model), satellites data and numerical model output on the Korean peninsula. The Meteorological input data to perform the GWNU model are retrieved aerosol optical thickness from MODIS (TERA/AQUA), total ozone amount from OMI (AURA), cloud fraction from geostationary satellites (MTSAT-1R) and temperature, pressure and total precipitable water from output of RDAPS (Regional Data Assimilation and Prediction System) and KLAPS (Korea Local Analysis and Prediction System) model operated by KMA (Korea Meteorological Administration). The model is carried out every hour using by the meteorological data (total ozone amount, aerosol optical thickness, temperature, pressure and cloud amount) and the basic data (surface albedo and DEM). And the result is analyzed the distribution in time and space and validated with 22 meteorological solar observations. The solar resources map is used to the solar energy-related industries and assessment of the potential resources for solar plant. The National Institute of Meteorological Research in KMA released $4km{\times}4km$ solar map in 2008 and updated solar map with $1km{\times}1km$ resolution and topological effect in 2010. The meteorological resources map homepage (http://www.greenmap.go.kr) is provided the various information and result for the meteorological-solar resources map.

  • PDF

Development of GK2A Convective Initiation Algorithm for Localized Torrential Rainfall Monitoring (국지성 집중호우 감시를 위한 천리안위성 2A호 대류운 전조 탐지 알고리즘 개발)

  • Park, Hye-In;Chung, Sung-Rae;Park, Ki-Hong;Moon, Jae-In
    • Atmosphere
    • /
    • v.31 no.5
    • /
    • pp.489-510
    • /
    • 2021
  • In this paper, we propose an algorithm for detecting convective initiation (CI) using GEO-KOMPSAT-2A/advanced meteorological imager data. The algorithm identifies clouds that are likely to grow into convective clouds with radar reflectivity greater than 35 dBZ within the next two hours. This algorithm is developed using statistical and qualitative analysis of cloud characteristics, such as atmospheric instability, cloud top height, and phase, for convective clouds that occurred on the Korean Peninsula from June to September 2019. The CI algorithm consists of four steps: 1) convective cloud mask, 2) cloud object clustering and tracking, 3) interest field tests, and 4) post-processing tests to remove non-convective objects. Validation, performed using 14 CI events that occurred in the summer of 2020 in Korean Peninsula, shows a total probability of detection of 0.89, false-alarm ratio of 0.46, and mean lead-time of 39 minutes. This algorithm can be useful warnings of rapidly developing convective clouds in future by providing information about CI that is otherwise difficult to predict from radar or a numerical prediction model. This CI information will be provided in short-term forecasts to help predict severe weather events such as localized torrential rainfall and hail.

Introduction to Simulation Activity for CMDPS Evaluation Using Radiative Transfer Model

  • Shin, In-Chul;Chung, Chu-Yong;Ahn, Myoung-Hwan;Ou, Mi-Lim
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.282-285
    • /
    • 2007
  • Satellite observed brightness temperature simulation using a radiative transfer model (here after, RTM) is useful for various fields, for example sensor design and channel selection by using theoretically calculated radiance data, development of satellite data processing algorithm and algorithm parameter determination before launch. This study is focused on elaborating the simulation procedure, and analyzing of difference between observed and modelled clear sky brightness temperatures. For the CMDPS (COMS Meteorological Data Processing System) development, the simulated clear sky brightness temperatures are used to determine whether the corresponding pixels are cloud-contaminated in cloud mask algorithm as a reference data. Also it provides important information for calibrating satellite observed radiances. Meanwhile, simulated brightness temperatures of COMS channels plan to be used for assessing the CMDPS performance test. For these applications, the RTM requires fast calculation and high accuracy. The simulated clear sky brightness temperatures are compared with those of MTSAT-1R observation to assess the model performance and the quality of the observation. The results show that there is good agreement in the ocean mostly, while in the land disagreement is partially found due to surface characteristics such as land surface temperature, surface vegetation, terrain effect, and so on.

  • PDF

Analysis of Long-term Variations of Sunshine Duration and Precipitation Intensity Using Surface Meteorological Data Observed in Seoul and Busan in Korea (서울과 부산에서 관측된 일조 시간 및 강수 강도의 장기 변동 분석)

  • Lee, Hyo-Jung;Kim, Cheol-Hee
    • Atmosphere
    • /
    • v.19 no.3
    • /
    • pp.243-253
    • /
    • 2009
  • In other to interpret the long-term variations of sunshine duration, cloud lifetime, and precipitation intensity observed in and around Seoul and Busan for the period from 1986 to 2005, aerosol indirect effect was employed and applied. For the identification of long-term trend of aerosol concentration, observed visibility and AOT of AERONET sunphotometer data were also used over the same regions. The result showed that the time series of visibility was decreased and those of AOT increased, especially trends were remarkable in 2000s. In both regions, occurrence frequencies of observed cloudiness (cloud amount ${\leq}6/10$) and strong precipitation (rain rate > $0.5mmhour^{-1}$) have been steadily increased while those of cloudiness (cloud amount > 7/10) and weak precipitation (rain rate ${\leq}0.2mmhour^{-1}$) decreased. These results are corresponding to the trend of both visibility and AERONET data, implying the aerosol indirect effect that makes size of cloud droplet reduce, cloud life-time longer and precipitation efficiency decreased. Our findings demonstrate that, although these phenomena are not highly significant, weather and climate system over Korean urban area have been changed toward longer lifetime of small cloudiness and increasing precipitation intensity as a result of increased aerosol indirect effect.

The Development of the Solar-Meteorological Resources Map based on Satellite data on Korean Peninsula (위성자료기반의 한반도 태양기상자원지도 개발)

  • Jee, Joon-Bum;Choi, Young-Jean;Lee, Kyu-Tae
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.342-347
    • /
    • 2011
  • Solar energy is attenuated by absorbing gases (ozone, aerosol, water vapour and mixed gas) and cloud in the atmosphere. And these are measured with solar instruments (pyranometer, phyheliometer). However, solar energy is insufficient to represent detailed energy distribution, because the distributions of instruments are limited on spatial. If input data of solar radiation model is accurate, the solar energy reaches at the surface can be calculated accurately. Recently a variety of satellite measurements are available to TERA/AQUA (MODIS), AURA (OMI) and geostationary satellites (GMS-5, GOES-9, MTSAT-1R, MTSAT-2 and COMS). Input data of solar radiation model can be used aerosols and surface albedo of MODIS, total ozone amount of OMI and cloud fraction of meteorological geostationary satellite. The solar energy reaches to the surface is calculated hourly by solar radiation model and those are accumulated monthly and annual. And these results are verified the spatial distribution and validated with ground observations.

  • PDF

Mesoscale Features and Forecasting Guidance of Heavy Rain Types over the Korean Peninsula (한반도 호우유형의 중규모 특성 및 예보 가이던스)

  • Kim, Sunyoung;Song, Hwan-Jin;Lee, Hyesook
    • Atmosphere
    • /
    • v.29 no.4
    • /
    • pp.463-480
    • /
    • 2019
  • This study classified heavy rain types from K-means clustering for the hourly relationship between rainfall intensity and cloud top height over the Korean peninsula, and then examined their statistical characteristics for the period of June~August 2013~2018. Total rainfall amount of warm-type events was 2.65 times larger than that of the cold-type, whereas the lightning frequency divided by total rainfall for the warm-type was only 46% of the cold-type. Typical cold-type cases exhibited high cloud top height around 16 km, large reflectivity in the upper layer, and frequent lightning flashes under convectively unstable condition. Phenomenally, the cold-type cases corresponded to cloud cluster or multi-cell thunderstorms. However, two warm-type cases related to Changma and typhoon were characterized by heavy rainfall due to long duration, relatively low cloud top height and upper-level reflectivity, and the absence of lightning under the convectively neutral and extremely humid conditions. This study further confirmed that the forecast skill of rainfall could be improved by applying correction factor with the overestimation for cold-type and underestimation for warm-type cases in the Local Data Assimilation and Prediction System (LDAPS) operational model (e.g., BIAS score was improved by 5%).