• Title/Summary/Keyword: Cloud Computing Services

Search Result 644, Processing Time 0.028 seconds

Design and Evaluation of an Edge-Fog Cloud-based Hierarchical Data Delivery Scheme for IoT Applications (사물인터넷 응용을 위한 에지-포그 클라우드 기반 계층적 데이터 전달 방법의 설계 및 평가)

  • Bae, Ihn-Han
    • Journal of Internet Computing and Services
    • /
    • v.19 no.1
    • /
    • pp.37-47
    • /
    • 2018
  • The number of capabilities of Internet of Things (IoT) devices will exponentially grow over the next years. These devices may generate a vast amount of time-constrained data. In the context of IoT, data management should act as a layer between the objects and devices generating the data and the applications accessing the data for analysis purposes and services. In addition, most of IoT services will be content-centric rather than host centric to increase the data availability and the efficiency of data delivery. IoT will enable all the communication devices to be interconnected and make the data generated by or associated with devices or objects globally accessible. Also, fog computing keeps data and computation close to end users at the edge of network, and thus provides a new breed of applications and services to end users with low latency, high bandwidth, and geographically distributed. In this paper, we propose Edge-Fog cloud-based Hierarchical Data Delivery ($EFcHD^2$) method that effectively and reliably delivers IoT data to associated with IoT applications with ensuring time sensitivity. The proposed $EFcHD^2$ method stands on basis of fully decentralized hybrid of Edge and Fog compute cloud model, Edge-Fog cloud, and uses information-centric networking and bloom filters. In addition, it stores the replica of IoT data or the pre-processed feature data by edge node in the appropriate locations of Edge-Fog cloud considering the characteristic of IoT data: locality, size, time sensitivity and popularity. Then, the performance of $EFcHD^2$ method is evaluated through an analytical model, and is compared to fog server-based and Content-Centric Networking (CCN)-based data delivery methods.

An Analysis of Big Video Data with Cloud Computing in Ubiquitous City (클라우드 컴퓨팅을 이용한 유시티 비디오 빅데이터 분석)

  • Lee, Hak Geon;Yun, Chang Ho;Park, Jong Won;Lee, Yong Woo
    • Journal of Internet Computing and Services
    • /
    • v.15 no.3
    • /
    • pp.45-52
    • /
    • 2014
  • The Ubiquitous-City (U-City) is a smart or intelligent city to satisfy human beings' desire to enjoy IT services with any device, anytime, anywhere. It is a future city model based on Internet of everything or things (IoE or IoT). It includes a lot of video cameras which are networked together. The networked video cameras support a lot of U-City services as one of the main input data together with sensors. They generate huge amount of video information, real big data for the U-City all the time. It is usually required that the U-City manipulates the big data in real-time. And it is not easy at all. Also, many times, it is required that the accumulated video data are analyzed to detect an event or find a figure among them. It requires a lot of computational power and usually takes a lot of time. Currently we can find researches which try to reduce the processing time of the big video data. Cloud computing can be a good solution to address this matter. There are many cloud computing methodologies which can be used to address the matter. MapReduce is an interesting and attractive methodology for it. It has many advantages and is getting popularity in many areas. Video cameras evolve day by day so that the resolution improves sharply. It leads to the exponential growth of the produced data by the networked video cameras. We are coping with real big data when we have to deal with video image data which are produced by the good quality video cameras. A video surveillance system was not useful until we find the cloud computing. But it is now being widely spread in U-Cities since we find some useful methodologies. Video data are unstructured data thus it is not easy to find a good research result of analyzing the data with MapReduce. This paper presents an analyzing system for the video surveillance system, which is a cloud-computing based video data management system. It is easy to deploy, flexible and reliable. It consists of the video manager, the video monitors, the storage for the video images, the storage client and streaming IN component. The "video monitor" for the video images consists of "video translater" and "protocol manager". The "storage" contains MapReduce analyzer. All components were designed according to the functional requirement of video surveillance system. The "streaming IN" component receives the video data from the networked video cameras and delivers them to the "storage client". It also manages the bottleneck of the network to smooth the data stream. The "storage client" receives the video data from the "streaming IN" component and stores them to the storage. It also helps other components to access the storage. The "video monitor" component transfers the video data by smoothly streaming and manages the protocol. The "video translator" sub-component enables users to manage the resolution, the codec and the frame rate of the video image. The "protocol" sub-component manages the Real Time Streaming Protocol (RTSP) and Real Time Messaging Protocol (RTMP). We use Hadoop Distributed File System(HDFS) for the storage of cloud computing. Hadoop stores the data in HDFS and provides the platform that can process data with simple MapReduce programming model. We suggest our own methodology to analyze the video images using MapReduce in this paper. That is, the workflow of video analysis is presented and detailed explanation is given in this paper. The performance evaluation was experiment and we found that our proposed system worked well. The performance evaluation results are presented in this paper with analysis. With our cluster system, we used compressed $1920{\times}1080(FHD)$ resolution video data, H.264 codec and HDFS as video storage. We measured the processing time according to the number of frame per mapper. Tracing the optimal splitting size of input data and the processing time according to the number of node, we found the linearity of the system performance.

A Resource Management Scheme Based on Live Migrations for Mobility Support in Edge-Based Fog Computing Environments (에지 기반 포그 컴퓨팅 환경에서 이동성 지원을 위한 라이브 마이그레이션 기반 자원 관리 기법)

  • Lim, JongBeom
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.4
    • /
    • pp.163-168
    • /
    • 2022
  • As cloud computing and the Internet of things are getting popular, the number of devices in the Internet of things computing environments is increasing. In addition, there exist various Internet-based applications, such as home automation and healthcare. In turn, existing studies explored the quality of service, such as downtime and reliability of tasks for Internet of things applications. To enhance the quality of service of Internet of things applications, cloud-fog computing (combining cloud computing and edge computing) can be used for offloading burdens from the central cloud server to edge servers. However, when devices inherit the mobility property, continuity and the quality of service of Internet of things applications can be reduced. In this paper, we propose a resource management scheme based on live migrations for mobility support in edge-based fog computing environments. The proposed resource management algorithm is based on the mobility direction and pace to predict the expected position, and migrates tasks to the target edge server. The performance results show that our proposed resource management algorithm improves the reliability of tasks and reduces downtime of services.

An Authentication Scheme for Providing to User Service Transparency in Multicloud Environment (멀티클라우드 환경에서 사용자에게 서비스의 투명성을 제공하는 인증 기법)

  • Lee, Jaekyung;Son, Junggab;Kim, Hunmin;Oh, Heekuck
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.23 no.6
    • /
    • pp.1131-1141
    • /
    • 2013
  • Most of the single server model of cloud computing services have problems that are hard to solve, such as a service availability, insider attack, and vendor lock-in, etc. To solve these problems, the research about multicloud has emerged. Multicloud model can supplement previous cloud model's weakness and provides new services to user. In this paper, we focus on a user authentication problem in multicloud model and propose a scheme to resolve it. We define a cloud broker-based multicloud model. And we propose an authentication protocol that is applicable at presented model. The proposed scheme can provide service transparency to user and prevent an impersonation attack by service provider.

Extracting Neural Networks via Meltdown (멜트다운 취약점을 이용한 인공신경망 추출공격)

  • Jeong, Hoyong;Ryu, Dohyun;Hur, Junbeom
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.6
    • /
    • pp.1031-1041
    • /
    • 2020
  • Cloud computing technology plays an important role in the deep learning industry as deep learning services are deployed frequently on top of cloud infrastructures. In such cloud environment, virtualization technology provides logically independent and isolated computing space for each tenant. However, recent studies demonstrate that by leveraging vulnerabilities of virtualization techniques and shared processor architectures in the cloud system, various side-channels can be established between cloud tenants. In this paper, we propose a novel attack scenario that can steal internal information of deep learning models by exploiting the Meltdown vulnerability in a multi-tenant system environment. On the basis of our experiment, the proposed attack method could extract internal information of a TensorFlow deep-learning service with 92.875% accuracy and 1.325kB/s extraction speed.

A Privacy-preserving Image Retrieval Scheme in Edge Computing Environment

  • Yiran, Zhang;Huizheng, Geng;Yanyan, Xu;Li, Su;Fei, Liu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.2
    • /
    • pp.450-470
    • /
    • 2023
  • Traditional cloud computing faces some challenges such as huge energy consumption, network delay and single point of failure. Edge computing is a typical distributed processing platform which includes multiple edge servers closer to the users, thus is more robust and can provide real-time computing services. Although outsourcing data to edge servers can bring great convenience, it also brings serious security threats. In order to provide image retrieval while ensuring users' data privacy, a privacy preserving image retrieval scheme in edge environment is proposed. Considering the distributed characteristics of edge computing environment and the requirement for lightweight computing, we present a privacy-preserving image retrieval scheme in edge computing environment, which two or more "honest but curious" servers retrieve the image quickly and accurately without divulging the image content. Compared with other traditional schemes, the scheme consumes less computing resources and has higher computing efficiency, which is more suitable for resource-constrained edge computing environment. Experimental results show the algorithm has high security, retrieval accuracy and efficiency.

Factors Affecting on Reusing Intention of Cloud Computing based Smartphone Environment (스마트폰 환경에서 클라우드 컴퓨팅 재사용의도에 미치는 요인)

  • Nam, Soo-Tai;Jin, Chan-Yong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.140-142
    • /
    • 2016
  • Recently, rapid innovation of Smartphone is changing the paradigm of our daily life. Smartphone users, opinion experts more than 99 percent of the economically active population is using, it has reached the saturation past the early stages of formation. Smartphone is equipped with a general purpose OS possible the implementation of high performance environment similar level as a personal computer. Thus, it is a mobile communication terminal scalable which can be removed or installed various applications. Such extensibility, it is possible to use different applications through the Apps store. Also, it is also possible various services which are location based service. In this research, we aim to analyze factors influencing of cloud computing service on reusing intention of smartphone. In addition, we aim to analyze the causal relationship from perceived value to reusing intention. This study suggests practical and theoretical implications based on the results.

  • PDF

A Study of E-commerce-based Capabilities of Small Firms with Cloud Computing Techniques

  • Zhou, Xuesong;Kim, Kyung-Tae
    • Journal of Information Technology Applications and Management
    • /
    • v.27 no.4
    • /
    • pp.21-36
    • /
    • 2020
  • E-commerce represents the acquisition and sale, or the transmission of funds or data through an electronic platform. E-commerce is a paradigm shift that influences marketers and customers to improve current market processes. The significant challenges in e-commerce are the accuracy and performance factors during a business transaction, which has been substantially enhanced using Cloud Computing Techniques (CCT). The growth of e-commerce management has been increased due to massive internet penetration, and particularly small and emerging companies are increasingly using this alternative as a differentiated business model. E-commerce has significant environmental impacts and highly utilized in today's market scenario. Further, the replacement has not been thoroughly explored. Current research has been carried out to describe the e-commerce scenario to analyze market trends. This study further discusses the essential variables to the performance of market models for e-commerce. For example, e-procurement of products/services, electronic supply chain management, e-distribution and selling support (supplier connections, e-fulfilment) and online e-auctions (transactional) can represent important e-commerce capabilities, which can contribute to marketing strategy implementation effectiveness, resulting in higher export performance.

Global Manager - A Service Broker In An Integrated Cloud Computing, Edge Computing & IoT Environment

  • Selvaraj, Kailash;Mukherjee, Saswati
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.6
    • /
    • pp.1913-1934
    • /
    • 2022
  • The emergence of technologies like Big data analytics, Industrial Internet of Things, Internet of Things, and applicability of these technologies in various domains leads to increased demand in the underlying execution environment. The demand may be for compute, storage, and network resources. These demands cannot be effectively catered by the conventional cloud environment, which requires an integrated environment. The task of finding an appropriate service provider is tedious for a service consumer as the number of service providers drastically increases and the services provided are heterogeneous in the specification. A service broker is essential to find the service provider for varying service consumer requests. Also, the service broker should be smart enough to make the service providers best fit for consumer requests, ensuring that both service consumer and provider are mutually beneficial. A service broker in an integrated environment named Global Manager is proposed in the paper, which can find an appropriate service provider for every varying service consumer request. The proposed Global Manager is capable of identification of parameters for service negotiation with the service providers thereby making the providers the best fit to the maximum possible extent for every consumer request. The paper describes the architecture of the proposed Global Manager, workflow through the proposed algorithms followed by the pilot implementation with sample datasets retrieved from literature and synthetic data. The experimental results are presented with a few of the future work to be carried out to make the Manager more sustainable and serviceable.

Efficient Checkpoint Algorithm for Message-Passing Parallel Applications on Cloud Computing (클라우드컴퓨팅에서 메시지패싱방식 응용프로그램의 효율적인 체크포인트 알고리즘)

  • Le, Duc Tai;Dao, Manh Thuong Quan;Ahn, Min-Joon;Choo, Hyun-Seung
    • Annual Conference of KIPS
    • /
    • 2011.04a
    • /
    • pp.156-157
    • /
    • 2011
  • In this work, we study the checkpoint/restart problem for message-passing parallel applications running on cloud computing environment. This is a new direction which arises from the trend of enabling the applications to run on the cloud computing environment. The main objective is to propose an efficient checkpoint algorithm for message-passing parallel applications considering communications with external systems. We further implement the novel algorithm by modifying gSOAP and OpenMPI (the open source libraries) which support service calls and checkpoint message-passing parallel programs, especially. The simulation showed that additional costs to the executing and checkpointing application of the algorithm are negligible. Ultimately, the algorithm supports efficiently the checkpoint/restart service for message-passing parallel applications, that send requests to external services.