• Title/Summary/Keyword: Clothoid Curve

Search Result 8, Processing Time 0.023 seconds

The Cooperation of Arc Welding Robot and Manipulator for Continuous Welding of Corner Area (모서리 부위 연속 용접을 위한 아크 용접 로봇과 포지셔너의 협업)

  • 장교근;유범상
    • Proceedings of the KWS Conference
    • /
    • 1996.05a
    • /
    • pp.96-98
    • /
    • 1996
  • Welding of corner area across the edge is a difficult problem in robotized arc welding system, especially when continuously-welded leakage-proof product is required. This paper presents the methodology of cooperation plan of an arc welding robot and 1 or 2 axis welding manipulators for corner area welding. Welding trajectory for the robot is generated using clothoid curves; symmetrical double clothoid curve or unsymmetrical clothoid curve depending on the nature of the workpiece. The clothoid curve is first formulated for the case of linear type positioning table and then applied to the case of rotary type manipulator. The methodology is then illustrated for practical downhand welding situations.

  • PDF

Trajectory Development of Robotic Arc Welding System for Continuous Welding of Corner Area (모서리 부위 연속 용접을 위한 아크 용접 로봇 시스템의 궤적 개발)

  • 장교근;유범상
    • Journal of Welding and Joining
    • /
    • v.14 no.6
    • /
    • pp.68-80
    • /
    • 1996
  • When a workpiece is to be arc welded around the outside corner, continuous welding without welding seam in the neighborhood of comer still remains a very difficult technique. Skilled welders weld comers by delicate“hand-eye coordination”while turning the workpiece manually, However, there is not a very clear solution to this problem in robotized arc welding process. In order to solve this problem, the coordination of a robot and a positioner with one or two axes is necessary. This paper presents a method of continuous welding around the corner of workpiece using the coordinated motion of a robot and a positioner. The positioner is either revolute jointed or prismatic jointed. In this paper, a clothoid curve is chosen for welding trajectory. The clothoid curve is excellent in connecting straight and curved weld-lines with good continuity and accommodates various welding conditions. By using this welding trajectory, the deceleration, which leads to widening of the melt and the heat affected zone, at comer area is reduced with strategic rotation of robot torch in coordination with a positioner providing smooth transition of welding torch orientation. Two types of special clothoid curves are developed for different weld slope conditions. These clothoid curves are applied to the case of linear and rotary Positioners at arc welding robot work-cell.

  • PDF

Free Vibrations of Double Hinged Curved Beams with Clothoid Transition Segment (Clothoid 완화곡선을 갖는 양단회전 곡선보의 자유진동)

  • 이병구;진태기;최규문;김선기
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.391-397
    • /
    • 2001
  • This paper explores the free vibrations of double hinged curved beams with transition segment. In this study, the clothoid curve is chosen as the transition segment of beams. The differential equations governing free vibration of such beams are derived in which the effects of rotatory inertia and shear deformation are included. The Runge-Kutta method and Determinant Search method are used to perform the integration of differential equations and to compute natural frequencies, respectively. In numerical examples, the double hinged end constraint is considered. The lowest four natural frequencies are presented as functions of three non-dimensional system parameters: the slenderness ratio, shear parameter and stiffness parameter.

  • PDF

Path Generation of Mobile Robots Using Clothoid Curves (클롯호이드 곡선을 이용한 이동로봇트의 경로제작)

  • Shin, Dong Hun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.1
    • /
    • pp.38-47
    • /
    • 1995
  • 이 논문에서는 이동로보트가 주행하기 쉬운 경로의 조건을 간단히 보인 후, 이러한 경로를 제작하는 방법을 제시하였다. 과거의 제작방법들은 대체적으로 주어진 점들을 직선으로 연결한 수 모서리를 원호, 클롯호이드 곡선 등으로 모서리 안쪽으로 곡선화하였다. 이 논문에서 제시된 방법은 두 단계로 되어있는데, 먼저 주어진 연속의 점들을 연속의 포우스쳐들로 바꾼 후, 이 포우스쳐들을 클롯호이드 곡선으로 연결한다. 클롯호이드 곡선의 특성상, 생성된 경로는 점선각, 곡률까지 연속적이며 곡률은 구분적으로 선형이며, 이 외에, 과거의 경로는 주어진 점들의 모서리 안쪽을 지나는 것에 비하여, 주어진 점들을 부드럽게 바깥쪽으로부터 통과하는데, 이것은 장애물들이 경로의 모서리의 안쪽에 있는 것을 생각하면 매우 유용한 점이다.

  • PDF

Free Vibration of Horizontally Curved Beams with Clothoid Transient Curve (크로소이드 완화곡선을 갖는 수평 곡선보의 자유진동)

  • 이병구;진태기;이태은
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.1
    • /
    • pp.189-195
    • /
    • 2002
  • This paper deals with the free vibration of horizontally curved beams with transition currie. Based on the dynamic equilibrium equations of a curved beam element subjected to the stress resultants and inertia forces, the governing differential equations are derived for the out-of-plane vibration of curved beam with variable curvature. These equations are applied to the beam having transition curve in which the clothiod curve is chosen in this study. The differential equations are solved by the numerical methods lot calculating the natural frequencies and mode shapes. For verifying theories developed herein, the frequency parameters obtained from this studs and ADINA are compared with each other. As the numerical results, the various parametric studies effecting on natural frequencies are investigated and those results are presented in tables and figures.

Analysis of Running Safety and Ride Comfort According to the Shape of Transition Curve (완화곡선형상별 차량주행안전성 및 승차감 분석)

  • Choi, Il-Yoon;Um, Ju-Hwan;Kim, Man-Cheol;Park, Chan-Kyoung
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.5
    • /
    • pp.509-515
    • /
    • 2010
  • Primary function of a transition curve is to accomplish gradual transition from the straight to circular curve, so that curvature changes from zero to a finite value. The transition curve enhances the running safety and ride comfort of the vehicle in curve. There are a couple of transition curve such as clothoid, cubic parabola and cosinusoidal curve, etc. In this study, running behaviors of cubic parabola and cosinusoidal curve were investigated and compared by numerical analysis result using VAMPIRE program. Ride comforts for an individual transition curve were evaluated for each transition curve and running behavior and safety were also evaluated to compare the capacity of transition curves.

A Study of the Effect Factor of Unexpected Accidents on Expressways (고속도로 돌발상황 발생 영향 요인 연구)

  • Hey Jin Kim;Young Hyuk Kong;Dong Jun Choi
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.2
    • /
    • pp.105-116
    • /
    • 2023
  • The fatality rate of secondary accidents is seven times that of general traffic accidents. If limited to highways, one in four deaths are said to occur from secondary accidents. Unexpected situations which do not give drivers time to prepare are the cause of secondary accidents. This risk results in more fatalities on highways with high driving speeds. Existing studies have conducted research on traffic accidents and on secondary traffic accidents that occur after a primary traffic accident, without considering unexpected situations that may occur on the road. Therefore, to reduce damage and casualties caused by secondary accidents, there is a need to create a safe road environment by removing the possibility of causing accidents. This study analyzes whether the day of occurrence, time of occurrence, and radius of the curve of an unexpected situation are related to the occurrence of an unexpected situation. This study was based on data of accidents that occurred in 2022 on the Cheonan-Nonsan Expressway and the Seoul-Yangyang Expressway. The radius of the curve was calculated by dividing the section of the highway into straight, clothoid, and curved sections through cluster analysis. Results of the analysis indicate that the day and time of occurrence and the curve radius are associated with unexpected situations.

Development of Highway Safety Evaluation Considering Design Consistency using Acceleration (가속도를 고려한 도로의 설계일관성 평가기법에 관한 연구)

  • 하태준;박제진;김유철
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.1
    • /
    • pp.127-136
    • /
    • 2003
  • Road safety is defined under the minimum design standard and design examination process is consisted of the standard according to current road design. However, road safety in practical way is correlative to not only all element of roads but also road shape, such as, between straight line and curved line and between curved lines. Also. it is related to alignments such as horizontal alignment and vertical alignment, and cross section. That is, the practical road design should be examined in both sides of 3 dimension and consecutiveness (consistency) as the actual road is a 3 - dimensional successive object. The paper presents a concept for acceleration to evaluate consistency of road considering actual road shape on 3-dimension. Acceleration of vehicle is influential to road consistency based on running state of vehicles and state of drivers. The magnitude of acceleration. especially, is a quite influential element to drivers. Based on above, the acceleration on each point on 3-D road can be calculated and then displacement can be done. Computation of acceleration means total calculation on each axis. Speed profile refers to “Development of a safety evaluation model for highway horizontal alignment based on running speed(Jeong, Jun-Hwa, 2001)” and then acceleration can be calculated by using the speed pronto. According to literature review, definition of acceleration on 3-D and g-g-g diagram are established. For example, as a result of the evaluation, if the acceleration is out of range, the road is out of consistency. The paper shows calculation for change of acceleration on imaginary road under minimum design standard and the change tried to be applied to consistency. However accurate acceleration is not shown because the speed forecasting model is limited and the paper did not consider state of vehicles (suspension, tires and model of vehicles). If speed pronto is defined exactly, acceleration is calculated on all road shapes, such as. compound curve and clothoid curve. and then it is appled to consistency evaluation. Unfortunately, speed forecasting model on 3 -D road and on compound curves have rarely presented. Speed forecasting model and speed profile model need to be established and standard of consistency evaluation need to developed and verified by experimental vehicles.