• Title/Summary/Keyword: Clothing Insulation

Search Result 124, Processing Time 0.019 seconds

An Approach of Indoor thermal Environment Control and Energy Saving Using the PMV Index (PMV지표를 이용한 공동주택의 난방제어에 따른 온열환경 및 에너지소비량 시뮬레이션)

  • Seong, Nam-Chul;Yoon, Dong-Won
    • Land and Housing Review
    • /
    • v.1 no.1
    • /
    • pp.19-25
    • /
    • 2010
  • Thermal comfort provide satisfaction of thermal environment and affects productivity of occupants in residential building. However, temperature control can not provide the thermal comfort at all the time. because thermal comfort is influenced by many environmental variables such as temperature, relative humidity, air velocity, radiation temperature, activity level and clothing insulation. The purpose of this study is that predicted mean vote(PMV) index is used as control. And, Thermal comfort is evaluated both PMV control and temperature control by simulation. Each other cases were compared, in which set-point temperatures of $22^{\circ}C$ and $24^{\circ}C$ and, set-point PMV index through the respective heating season in the simulation. The results show that PMV control is better to maintain comfort state and save energy than temperature control.

Spatial Distribution Patterns of Winter Daytime and Nighttime Apparent Temperature in South Korea (남한의 겨울철 주.야간 체감 온도의 공간적 분포 특성)

  • 최광용;강철성
    • Journal of the Korean Geographical Society
    • /
    • v.37 no.3
    • /
    • pp.237-246
    • /
    • 2002
  • This study classified wintertime bioclimatic zones of South Korea based on daytime and nighttime distribution of wind chill index calculated from climate data during the coldest month for latest 30 years (1971- 2000). The results show that the winter daytime and nighttime wind chill index were influenced by climatic factors such as elevation, land-sea breeze, topology, and sea currents etc. as well as climatic components such as temperature, wind speed, and sunshine, so that South Korea was divided into five bioclimatic zones; Cool day- cold night zone, Keen day- Cold night zone, Keen day-Very Cold night zone, Cold day and night zone, and Cold day-Extremely Cold night zone. Especially, coasts and island areas, except for south coast of Korea, shows Keen bioclimatic response during daytime and Very Cold bioclimatic response during nighttime. This indicates that coasts and island areas, except for south coast of Korea are affected by moonson and land-sea breeze. In addition, highly elevated Daegwallyeong shows Cold bioclimatic response during daytime and Extremely Cold during nighttime due to the influence of adiabatic temperature lapse rate and monsoon. This study offers basic data necessary to make decisions concerning insulation such as clothing and architect etc. by classifying winter bioclimatic zones of South Korea based on various daytime and nighttime distribution of wind chill.

Effects of Ondol Sleep Environment on the Thermo-physiological Response of the Human Body (온돌 수면환경이 인체의 온열생리반응에 미치는 영향)

  • Kim, Jung-Sook;Sung, Su-Kwang
    • Fashion & Textile Research Journal
    • /
    • v.1 no.2
    • /
    • pp.173-181
    • /
    • 1999
  • The purpose of this study was to investigate actual sleeping environments in Ondol rooms depending on the season. The experiment was performed on five healthy women. The bedroom environments using Ondol were measured in five cases (three apartments and two houses). The environments in bedroom, bedding temperature, skin temperature and thermal sensation were measured continuously through the seven days for each season in real life. This data of sleeping environments were analyzed in the view of seasonal variations and housing types. Annual average bedroom temperatures: $26.2{\sim}31.0^{\circ}C$ in apartments, $15.7{\sim}33.6^{\circ}C$ in houses. Annual average bedroom humidity: 48.3~82.1% RH in apartments, 64.9~87.0% RH in houses. During sleeping, temperatures of contact surfaces like sheets and under quilts ranged between $30.5^{\circ}C$ and $34.1^{\circ}C$ regardless of season or housing type. Annual average rectal temperature was $36.8^{\circ}C$ with no significant difference in season or housing type. In the point of thermal sensation, neutral temperature of the bedroom was $25.9^{\circ}C$ in apartments and $20.3^{\circ}C$ in houses. It was concluded that in spite of thermal environmental variations according to the seasons, skin, bedding and bedroom temperatures in apartments were better and more stable than those of houses. It is regarded that while houses are brick structured, apartments are steel-frame structured. Due to better insulation and air tightness, apartments were affected less from outdoor temperature and maintained higher room temperature than houses.

  • PDF

A Study on the Measurement of Ultrasound Velocity to Evaluate Degradation of Low Voltage Cables for Nuclear Power Plants (원전 저압케이블 열화도 평가를 위한 초음파 음속계측에 관한 연구)

  • Kim, Kyung-Cho;Kang, Suk-Chull;Goo, Charles;Kim, Jin-Ho;Park, Jae-Seok;Joo, Geum-Jong;Park, Chi-Seung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.4
    • /
    • pp.325-330
    • /
    • 2004
  • Several kinds of low voltage cables have been used in nuclear power plants for the supply of electric power, supervision, and the propagation of control signals. These low voltage tables must be inspected for safe and stable operation of nuclear power plants. In particular, the degradation diagnosis to estimate the integrity of low voltage rabies has recently been emphasized according to the long use of nuclear power plants. In order to evaluate their degradation, the surrounding temperature, hardness of insulation material, elongation at breaking point (EAB), etc. have been used. However, the measurement of temperature or hardness is not useful because of the absence of quantitative criteria; the inspection of a sample requires turning off of the power plant power; and, the electrical inspection method is not sufficiently sensitive from the initial through the middle stage of degradation. In this research, based on the theory that the ultrasonic velocity changes with relation to the degradation of the material, we measured the ultrasonic velocity as low voltage cables were degraded. To this end, an ultrasonic degradation diagnosis device was developed and used to measure the ultrasonic velocity with the clothing on the cable, and it was confirmed that the ultrasonic velocity changes according to the degradation of low voltage cables. The low voltage cables used in nuclear power plants were degraded at an accelerated rate, and EAB was measured in a tensile test conducted after the measurement of ultrasonic velocity. With the increasing degradation degree, the ultrasonic velocity decreased, whose potential as a useful parameter for the quantitative degradation evaluation was thus confirmed.