• Title/Summary/Keyword: Closing Department

Search Result 453, Processing Time 0.024 seconds

A Study on Mandibular Opening and Closing Movements at Mandibular incisor region and Clinical Rest Position (하악 전치부의 개폐운동과 안정위에 관한 연구)

  • Ahn, Seung-Geun;Song, Kwang-Yeob;Park, Charn-Woon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.27 no.2
    • /
    • pp.143-154
    • /
    • 1989
  • The purpose of this study was to investigate the mandibular opening and closing movements at mandibular incisor region and clinical rest position in normal subject using the newly developed electric mandibular movement analyzing device, (M.K.G.-K6 diagnostic system, Myo-tronics Inc. Seattle, WA, U.S.A.) The 58 normal subjects, who were students of the College of Dentistry, Chonbuk National University, were selected according to sampling criteria. The obtained results were as follows: 1. There was no significant difference of distribution of opening and closing movement patterns at mandibular incisor region between male and female. There was significant difference between habitual and maximum movement patterns both in sagittal and frontal plane. 2. Although the percentage of distribution of crossover pattern was highest in all cases, but there were significant differences between patterns only at habitual opening and closing movement in sagittal plane. 3. The mean of maximum opening was $47.29{\pm}4.68mm$ in male and $42.15{\pm}4.95mm$ in female. Therefore the mean of maximum opening was larger in male than in female. 4. The mean of maximum laterotrusion in frontal trajectory was larger to the left than to the right. Also the proportion of left deviation at maximum opening position was larger than that of other cases. 5. The mean of maximum opening and closing velocity was higher in male than in female and the mean of closing velocity was higher than that of opening velocity. Also the amount of separation from the centric occlusion was higher in maximum closing velocity than in maximum opening velocity. 6. Clinical rest position was $1.70{\pm}0.99mm$ inferior, $0.74{\pm}0.57mm$ anterior, $0.99{\pm}0.51mm$ right from centric occlusion and the A/V ratio was 1:2.7.

  • PDF

The Effect of Compliance Structures Near the Mechanical Heart Valve on Valve Surface Erosion (기계식 인공 판막 주위의 유연성 구조가 표면 괴식에 미치는 영향)

  • Lee, Hwan-Sung;Hwang, Sung-Won;Sun, Kyung
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.4
    • /
    • pp.309-315
    • /
    • 2002
  • Since the discovery, in the 1980s, of erosion-pit-induced fractures in implanted mechanical heart valves. cavitation on the surface of mechanical heart valves has been widely studied as a possible cause of pitting. Several factors, including peak dp/dt of the ventricular pressure. maximum closing velocity of the leaflet, and squeeze flow. have been studied as indices of the cavitation threshold. In the present study. cavitation erosion on the surface of a mechanical valve was examined by focusing on squeeze flow and the water hammer phenomenon during the closing period of the valve. In this study, we measures pressure wave forms near a valve and closing velocities of a disk, which were placed in a holder with and without compliance. In case of all holders, pressure drop of below vapor pressure expect at near the surface disk. It was also found that the closing velocity of the disk increased and that cavitation erosion was enhanced too. These results suggest that disk closing velocity during the closing phase has signifiant effects on pitting erosion.

A Numerical Study on Pressure Fluctuation and Air Exchange Volume of Door Opening and Closing Speeds in Negative Pressure Isolation Room (음압격리병실에서의 병실 문의 개폐속도에 따른 실간 압력변동 및 공기교환량에 대한 해석적 연구)

  • Kim, Jun Young;Hong, Jin Kwan
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.24 no.1
    • /
    • pp.51-58
    • /
    • 2018
  • Purpose: In this study, through the comparison of the pressure fluctuation and air exchange volume in negative isolation room according to the type of the door and door opening/closing speeds, which is one of the main factors causing the cross contamination of the negative pressure isolation room, establishes standard operating procedures to prevent cross contamination in high risk infectious diseases and isolation room design. Methods: In this study, the air flow each of the room is analyzed using ANASYS CFX CODE for flow analysis. In addition, the grid configuration of the door is constructed by applying Immersed Solid Methods. Results: The pressure fluctuation due to the opening and closing of the hinged door was very large when the moment of the hinged door opened and closed. Especially, at the moment when the door is closed, a pressure reversal phenomenon occurs in which the pressure in the isolation room is larger than the pressure in the anteroom. On the other hand, the pressure fluctuation due to the opening and closing of the sliding door appeared only when the door was closed, but the pressure reversal phenomenon not occurred at the moment when the sliding door was closed, unlike the hinged door. As the opening and closing speed of the hinged door increases, the air exchange volume is increased. However, as the opening and closing speed of the sliding door is decreased, the air exchange volume is increased. Implications: According to the results of this study, it can be concluded that the pressure fluctuation due to the opening and closing of the hinged door is greater than the pressure fluctuation due to the opening and closing of the sliding door. In addition, it can be confirmed that the pressure reversal phenomenon, which may cause to reduce the containment effect in negative pressure isolation room, is caused by the closing of the hinged door. Therefore, it is recommended to install a sliding door to maintain a stable differential pressure in the negative isolation room. Also, as the opening and closing speed of the hinged door is slower and the opening and closing speed of the sliding door is faster, the possibility of cross contamination of the room can be reduced. It is therefore necessary to establish standard operating procedures for negative isolation room for door opening and closing speeds.

Evaluation of Perceived Exertion and Satisfaction in Opening and Closing Tailgates of Sport Utility Vehicles (스포츠 유틸리티 차량의 테일게이트 개폐 불편도와 만족도 평가)

  • Son, Byungchang;Ryu, Taebeum
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • The difficulties in opening and closing a sport utility vehicle (SUV) tailgate is important aspect of JD (James David) power's Initial Quality Survey (IQS) assessment, and affective quality has a big impact on the the success of thesedays products. The purpose of this study is to evaluate the perceived difficulty and satisfaction of customers by the opening and closing of the tailgate and to grasp the relationship between them and the opening and closing reaction force. The mechanical force required to open and close 42 domestic and overseas SUV tailgates was measured with the help of an auto company. In the experiment, 100 male drivers in their 20s to 50s evaluated perceived difficulty and satisfaction with opening and closing the tailgate. The results of the analysis showed that perceived difficulty and satisfaction were statistically different depending on the vehicle, but did not depend on the personal characteristics of the participants. The perceived difficulty and satisfaction regression model of tailgate opening and closing was developed by mechanical force variables and had a relatively high adjusted $R^2$ ranging from 0.62 to 0.73. The models showed that the the initial close and open force, the difference between initial and maximum close force and the difference between initial and auto-fall angle should be small for the low perceived exertion and high satisfaction. In addition, the correlation analysis between IQS score of tailages and perceived difficulty and satisfaction showed that the IQS scores were more related to the perceived difficulty and satisfaction of closing than those of opening. The results of the study will be helpful to design and test mechanical open and close structure of SUV tailgates.

A study on the determination of the instantaneous center of rotation pathway and the movement of the mandible by using the B-spline method (B-splint법에 의한 순간 회전 중심로 결정과 하악운동에 관한 연구)

  • Kang, Dong-Wan;Kay, Kee-Sung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.27 no.1
    • /
    • pp.55-81
    • /
    • 1989
  • Recently the instantaneous center concept has been to understand the biomechanics by which a tissue derangement causes a mechanical derangement in human joint. Therefore, to understand the biomechanics of temporomandibular joint (T.M.J.) as a part of human joint, it is necessary to clarify the instantaneous center of rotation (I.C.R.) in the mandibular movement. Twenty male subjects without T.M.J. disorder and mandibular deviation during the mandibular movement were selected for this study. The habitual opening and closing paths were recorded on the paper of the sagittal metal plate by two pencil markers connected to the resin open clutch attached on the lower teeth, which was designed for this study. The coordinates of the 33-target points and the 109-anatomical landmarks were obtained using a Summagraphic digitizer connected to a 18AT computer. The original raw data of the opening and closing paths were smoothed by B-spline curve fitting technique and then the I.C.R. pathways were determined mathematically by the computer using algorithm for finding the I.C.R. of a planer rigid body model. Also the opening and closing movements of the mandible were simulated according to the determined I.C.R. The results obtained from this study were as follows. 1. At the early opening and the last closing, I.C.R's were almost distributed around the mastoid process outside the mandibular body without the presence in the region of the mandibular condyle. 2. The I.C.R. pathway showed variable patterns to each subject at the opening and closing movements. 3. The K constant with uniform pattern was obtained by the rotation angle times the radius, which was assumed to the index of the mandibular movement. 4. The opening and closing movements of the mandible were simulated by the I.C.R. pathways at the habitual opening and closing movements. 5. The mandibular condyle was rotated or translated accordng to the relative rotation angle and radius of the determinant factors of K contant.

  • PDF

Impact Behavior Analysis of a Mechanical Monoleaflet Heart Valve Prosthesis in the Closing Phase

  • Cheon, Gill-Jeong;Chandran, K.B.
    • Journal of Biomedical Engineering Research
    • /
    • v.13 no.4
    • /
    • pp.285-298
    • /
    • 1992
  • An analysis of the dynamics in the closing phase of the occluder of a mechanical monoleaflet heart valve prosthesis is presented. The dynamic analysis of the fluid in the vicinity of the occluder was based on the control vo]use approach. The backflow velocity of the fluid was computed by applying the continuity, Bernoulli's and momentum equations in the unsteady state. By considering the fluid pressure and gravity as external forces acting on the occluder, the moment equilibrium on fine occluder was employed to analyze the motion of the occluder during closing and the force of impact between the occluder and the guiding struts. Occluder comes to rest after several oscillations in about 10-18 msec after the Inltiaton of closing. As the aortic pressure increases, the occludes closes faster and comes to the final resting position earlier and the impact force increases also. But backflow is not af footed by the variation of the aortic pressure. With decreasing time delay of the ventricle pressure, the occluder closes faster and impact force Increases. The computed magnitudes of the occluder tiP velocities as well as the backflow of the fluid during the closing phase using this model were in agreement with previously reported experimental measurements.

  • PDF

Design of Heavy Weight Door Hinge for Built-in Appliances (빌트인 가전기기용 고 중량 도어힌지의 설계에 관한 연구)

  • Choi, Seong-Dae;Byn, Yong-Kun;Kim, Gi-Man
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.7
    • /
    • pp.41-47
    • /
    • 2021
  • In this study, the hinges of heavy weight doors were designed and analyzed in line with the trend that built-in appliances are becoming larger and the weight of doors is also increasing. The main specification of the heavy weight door hinge is to allow the deflection at the end of the door to be less than 2 mm when opening and closing, including the automatic closing, slow closing, and closing force control functions. The structural analysis of the design mechanism, component design, and methods for improving the deflection are as follows: 1) Mechanism of the automatic closing function should sense automatically using the spring compression force at a specific angle by the contact between the cam and the cam module roller. 2) Through structural analysis, the maximum stress of the door was found in the link pin hole connected to the pin at each link. 3) Consequently, the pin holder was designed and applied, with little variance, but up to 93% of the specification limit.