• 제목/요약/키워드: Closed-loop vertical ground heat exchanger

검색결과 31건 처리시간 0.032초

파이프 순환수의 수치해석 모사를 통한 수직 밀폐형 지중열교환기 단면의 열전달 효율 평가 (Numerical Evaluation of Heat Transfer un Ground Heat Exchanger Considering Flow through U-loop)

  • 길후정;이강자;이철호;최항석
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.583-587
    • /
    • 2009
  • This paper presents a series of numerical simulations on the thermal performance and sectional efficiency of a closed-loop vertical ground heat exchanger (U-loop) equipped in a geothermal heat pump system (GHP). A 3-D finite volume analysis (Fluent) was used to simulate the operating process of the closed-loop vertical ground heat exchanger by considering the effect of the thickness of HDPE pipe and grout thermal properties, distance between the inflow and outflow pipes, and the effectiveness of the latticed HDPE pipe system. It was observed that the thermal interference between the two strands of U-loop is of importance in determining the efficiency of the ground heat exchanger, and thus it is highly recommendable to modify the cross section configuration of the conventional U-loop system by including a thermally insulating latice between the two strands.

  • PDF

직접순환식 수직밀폐형 지열원 열펌프의 연간 운전성능 평가 (Evaluation of the Annual Performance of the Direct Expansion Vertical Closed-Loop Ground Source Heat Pump)

  • 김민성;우정선;백영진;장재철;김지영;라호상
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2012년도 춘계학술발표대회 논문집
    • /
    • pp.534-542
    • /
    • 2012
  • Vertical closed-loop ground source heat pump systems(GSHP) have been installed widely in Korea since it can extract moderate temperature level of geothermal heat in a small area. As a ground heat exchanger, a vertical closed-loop type with brine circulation is mostly preferred since it is simple and less harmful to ground environment. However, it requires a secondary heat exchange loop between the refrigerant in a heat pump and the brine. By adding a geothermal heat exchanger in the secondary heat exchange loop, circulation pumps should be attached and the temperature difference between refrigerant and ground is increased, which are important parts of performance degradation. In this paper, annual and seasonal performances of direct expansion(DX) geothermal heat pump were estimated mathematically as an alternative of classical indirect geothermal heat pump based on the annual performance evaluation. As a result, DX geothermal heat pump showed 43% higher annual performance than the classical U-tube geothermal heat pump.

  • PDF

주거용 직접순환식 수직밀폐형 지열원 열펌프의 연간 운전성능 평가 (Annual Performance Evaluation of Direct Expansion Vertical Closed-Loop Ground Source Heat Pump for Residential Application)

  • 김민성;백영진;라호상
    • 한국태양에너지학회 논문집
    • /
    • 제32권3호
    • /
    • pp.114-122
    • /
    • 2012
  • Vertical closed-loop ground source heat pump systems(GSHP) have been installed widely in Korea since it can extract moderate temperature level of geothermal heat in a small area. As a ground heat exchanger, a vertical closed -loop type with brine circulation is mostly preferred since it is simple and less harmful to ground environment. However, it requires a secondary heat exchange loop between the refrigerant in a heat pump and the brine. By adding a geothermal heat exchanger in the secondary heat exchange loop, circulation pumps should be attached and the temperature difference between refrigerant and ground is increased, which are important parts of performance degradation. In this paper, annual and seasonal performances of direct expansion(DX) geothermal heat pump were estimated mathematically as an alternative of classical indirect geothermal heat pump based on the annual performance evaluation. As results, DX geothermal heat pump showed 43% higher annual performance than the classical U-tube geothermal heat pump.

사무시설에 수직형 지열원 냉 난방시스템의 경제성을 고려한 인입온도(EWT)에 관한 연구 (A Study on Entering Water Temperature in Vertical Closed Ground Loop System Considering the Economical Feasibility in Load of the Office Building)

  • 이병두;이대우;이세진
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.579-585
    • /
    • 2009
  • Recently, Vertical-Closed Loop system using geothermal which is the most efficient among the building cooling and heating systems is coming into wide spread due to assistance of domestic policies. However, there is a limitation that a design of ground heat exchanger taking 60% of construction cost is done by GLD and GLHEPRO programs without specific guidelines and consideration on Entering Water Temperature(EWT). For getting an optimal EWT, we analyzed the costs for construction of ground heat exchanger and cooling and heating for 15 years. In the results, reduction of construction costs as the length of ground heat exchanger shortens was much greater than increase of the electrical power consumption as COP gets low. EWT that COP of heat pump can be 3.76 or above was below $31^{\circ}C$ in cooling and was over $5^{\circ}C$ in heating.

  • PDF

현장 열응답 시험을 통한 수직 밀폐형 지중열교환기의 성능 평가 (Evaluation of performance of closed-loop vertical ground heat exchanger by In-situ thermal response test)

  • 이철호;박문서;곽태훈;최항석
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 춘계 학술발표회
    • /
    • pp.229-239
    • /
    • 2010
  • Performing a series of in-situ thermal response tests, the effective thermal conductivity of six vertical closed-loop ground heat exchangers was experimentally evaluated and compared each other, which were constructed in a test bed in Wonju. To compare thermal efficiency of the ground heat exchangers in field, the six boreholes were constructed with different construction conditions: grouting materials (cement vs. bentonite), different additives (silica sand vs. graphite) and the shape of pipe-sections (general U-loop type vs. 3 pipe-type). From the test results, it can be concluded that cement grouting has a higher effective thermal conductivity than that of bentonite grouting, and the efficiency of graphite better performs over silica sand as a thermally-enhancing addictive. In addition, a new 3 pipe-type heat exchanger provides less thermal interference between the inlet and outlet pipe than the conventional U-loop type heat exchanger, which results in superior thermal performance.

  • PDF

개방형 지중열교환기 용량 설계 방법에 관한 연구 (Study on the Capacity Design Tool Development for Open-loop Ground Heat Exchanger)

  • 류형규;최승혁;윤희원;김유승
    • 한국지열·수열에너지학회논문집
    • /
    • 제13권2호
    • /
    • pp.9-15
    • /
    • 2017
  • When applying geothermal systems in cities such as seoul where high density development prevails, the selection of geothermal system capable of obtaining a large capacity in the limited grounds is necessary. In this study, an easy-to-use design tool is developed in the form of spreadsheet by applying the calculation theory of existing closed-loop vertical ground heat exchanger that can be used in the early design stage of the open-loop ground heat exchanger. By only using the maximum cooling and heating load, it is possible to calculate optimal design open-loop ground heat exchanger. Further research is needed, we are plan to improve the program considering the heat loss of groundwater flowing in the inner casing, G-Function for Open-Loop, and verification by applying actual projects.

수치해석을 통한 수직 밀폐형 지중열 교환기의 열전달 거동 연구 (Thermal Behavior of Vertical Ground Heat Exchanger by Numerical Simulation)

  • 길후정;이철호;김주영;최항석
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.1638-1646
    • /
    • 2008
  • This paper presents a series of numerical simulations on the thermal performance and sectional efficiency of a closed-loop vertical ground heat exchanger (U-loop) equipped in a geothermal heat pump system (GHP). A 2-D finite element analysis, ANSYS, was employed to evaluate the temperature distribution on the borehole cross section involving HDPE pipe/grout/soil formation to compare the sectional efficiency between the conventional U-loop and a new latticed HDPE pipe system which is equipped with a thermally insulating latice in order to reduce thermal interference between the inflow and outflow pipes. In addition, a 3-D finite volume analysis (Fluent) was used to simulate the operating process of the closed-loop vertical ground heat exchanger by considering the effect of grout's thermal properties, rate of circulation pump, distance between the inflow and outflow pipes, and the effectiveness of the latticed HDPE pipe system. It was observed that the thermal interference between the two strands of U-loop is of importance in determining the efficiency of the ground heat exchanger, and thus it is highly recommendable to modify the cross section configuration of the conventional U-loop system by including a thermally insulating latice between the two strands.

  • PDF

수직 밀폐형 지중열교환기 설계를 위한 지중 열전도도의 지역별 분포 (Regional Distribution of Ground Thermal Conductivity for Vertical Closed Type Ground Heat Exchanger Design)

  • 정계훈;손병후;임효재
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2007년도 동계학술발표대회 논문집
    • /
    • pp.423-428
    • /
    • 2007
  • This study was performed to construct a geothermal data base about thermal conductivity of ground heat exchanger and thermal properties of grouting material which used to refill the borehole. We have acquired geothermal data sets from 39 sites over wide area of South Korea except to Jeju island. From data analysis, the range of thermal conductivity is 1.5$\sim$4.0 W/mK. It means that thermal conductivity varies with grouting material as well as regional geology and ground water system.

  • PDF

수직밀폐형 지중열교환기의 회로 과도해석 상사모델 개발 (Development of an Electric Circuit Transient Analogy Model in a Vertical Closed Loop Ground Heat Exchanger)

  • 김원욱;박홍희;김용찬
    • 설비공학논문집
    • /
    • 제24권4호
    • /
    • pp.306-314
    • /
    • 2012
  • Several numerical or analytical models have been proposed to analyze the thermal response of vertical ground heat exchangers (GHEX). However, most models are valid only after several hours of operation since they neglect the heat capacity of the borehole. Recently, the short time response of the GHEX became important in system simulation to improve efficiency. In this paper, a simple new method to evaluate the short time response of the GHEX by using an analogy model of electric circuit transient analysis was presented. The new transient heat exchanger model adopting the concept of thermal capacitance of the borehole as well as the steady-state thermal resistance showed the transient thermal resistance of the borehole. The model was validated by in-situ thermal response test and then compared with the DST model of the TRNSYS program.

3차원 열유체 수치해석을 통한 현장 시공된 수직 밀폐형 지중열교환기의 열전달 거동 평가 (Heat transfer analysis of closed-loop vertical ground heat exchangers using 3-D fluid flow and heat transfer numerical model)

  • 박문서;이철호;민선홍;강신형;최항석
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회
    • /
    • pp.800-807
    • /
    • 2010
  • In this study, a series of numerical analyses has been performed in order to evaluate the performance of a full-scale closed-loop vertical ground heat exchanger constructed in Wonju. The circulation pipe HDPE, borehole and surrounding ground were modeled using FLUENT, a finite-volume method (FVM) program, for analyzing the heat transfer process of the system. Two user-defined functions (UDFs) accounting for the difference in the temperatures of the circulating inflow and outflow water and the change of the surrounding ground temperature with depth were adopted in the FLUENT model. The thermal properties of materials estimated in laboratory were used in the numerical analyses to compare the thermal efficiency of the cement grout with that of the bentonite grout used in the construction. The results of the simulation provide a verification of the in situ thermal response test data. The numerical model with the ground thermal conductivity of 4W/mK yielded the simulation result closer to the in-situ thermal response test than with the ground thermal conductivity of 3W/mK. From the results of the numerical analyses, the effective thermal conductivities of the cement and bentonite grouts were obtained to be 3.32W/mK and 2.99 W/mK, respectively.

  • PDF