• Title/Summary/Keyword: Closed-cup tester

Search Result 61, Processing Time 0.02 seconds

The Lower Flash Points of the n-Butanol+n-Decane System

  • Dong-Myeong Ha;Yong-Chan Choi;Sung-Jin Lee
    • Fire Science and Engineering
    • /
    • v.17 no.2
    • /
    • pp.50-55
    • /
    • 2003
  • The lower flash points for the binary system, n-butanol+n-decane, were measured by Pensky-Martens closed cup tester. The experimental results showed the minimum in the flash point versus composition curve. The experimental data were compared with the values calculated by the reduced model under an ideal solution assumption and the flash point-prediction models based on the Van Laar and Wilson equations. The predictive curve based upon the reduced model deviated form the experimental data for this system. The experimental results were in good agreement with the predictive curves, which use the Van Laar and Wilson equations to estimate activity coefficients. However, the predictive curve of the flash point prediction model based on the Willson equation described the experimentally-derived data more effectively than that of the flash point prediction model based on the Van Laar equation.

Measurement of Flash Points of Epoxy Resin Solutions by Using Additives (첨가제 사용에 의한 Epoxy Resin 용액의 인화점 측정)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.3 s.81
    • /
    • pp.22-27
    • /
    • 2007
  • The knowledge of the flash point of the various liquid substances is required because of process safety and control in industrial fire protection. The epoxy resin is one of versatile resins that has wide selection of using curing agents and additives to achieve various applications such as coatings, adhesives, interior materials, reinforced plastics and electrical insulation. In this study, the lower flash points for p-xylene+epoxy resin, o-xylene+epoxy resin and n-butanol+epoxy resin systems were measured by using Pensky-Martens closed cup tester. The lower flash points for p-xylene+epoxy resin, o-xylene+epoxy resin and n-butanol+epoxy resin systems rapidly increased 80wt%, 90wt% and 95wt% of epoxy resin concentration, respectively. This results serve as a guide to estimate flash point of any epoxy resin solution.

The Measurement and Prediction of Minimum Flash Point Behaviour for Flammable Binarry Solution Using Pensky-Martens Closed Cup Tester

  • Ha, Dong-Myeong;Choi, Yong-Chan;Lee, Sung-Jin
    • International Journal of Safety
    • /
    • v.9 no.2
    • /
    • pp.6-10
    • /
    • 2010
  • The flash point of liquid solution is one of the most important flammability properties that used in hazard and risk assessments. Minimum flash point behaviour (MFPB) is showed when the flash point of a liquid mixture is below the flash points of the individual components. In this paper, the lower flash points for the flammable binary system, n-decane+n-octanol, were measured by Pensky-Martens closed cup tester. This binary mixture exhibited MFPB. The measured flash points were compared with the values calculated by the Raoult's law and the optimization method using van Laar and UNIQUAC equations. The optimization method were found to be better than those based on the Raoult's law, and successfully estimated MFPB. The opimization method based on the van Laar equation described the experimentally-derived data more effectively than was the case when the prediction model was based upon the UNIQUAC.

Prediction of Upper Explosion Limits(UEL) by Measurement of Upper Flash Point Using Setaflash Apparatus for n-Alcohols (Setaflash 장치를 이용한 노말 알코올류의 상부인화점 측정에 의한 폭발상한계의 예측)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.2
    • /
    • pp.35-40
    • /
    • 2010
  • Explosion limit and flash point are the major combustion properties used to determine the fire and explosion hazards of the flammable substances. In this study, in order to predict upper explosion limits(UEL), the upper flash point of n-alcohols were measured under the VLE(vapor-liquid equilibrium) state by using Setaflash closed cup tester(ASTM D3278). The UELs calculated by Antoine equation using the experimental upper flash point are usually lower than the several reported UELs. From the given results, using the proposed experimental and predicted method, it is possible to research the upper explosion limits of the other flammable substances.

Prediction of Upper Explosion Limits(UEL) by Measurement of Upper Flash Points for n-Alkanes and Aromatic Compounds (노말알칸류와 방향족탄화수소류의 상부인화점 측정에 의한 폭발상한계의 예측)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.4
    • /
    • pp.59-64
    • /
    • 2011
  • Explosion limit and flash point are the major combustion properties used to determine the fire and explosion hazards of the flammable substances. In this study, in order to predict upper explosion limits(UELs), the upper flash point of n-alkanes and aromatic compounds were measured under the VLE(vapor-liquid equilibrium) state by using Setaflash closed cup tester(ASTM D3278). The UELs calculated by Antoine equation and chemical stoichiometric coefficient tusing the experimental upper flash point were compared with the several reported UELs. From the given results, using the proposed experimental and predicted method, it is possible to research the upper explosion limits of the other flammable substances.

Measurement and Prediction of Fire and Explosion Characteristics of n-Butylacetate (초산부틸의 화재 및 폭발 특성치 측정 및 예측)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.5
    • /
    • pp.25-31
    • /
    • 2017
  • The flash point, explosion limits, autoignition temperature(AIT) are important combustible properties which need special concern in the chemical safety process that handle hazardous substances. For the evaluation of the flammable properties of n-butylacetate, this study was investigated the explosion limits of n-butylacetate in the reference data. The flash points, fire points and AIT by the ignition delay time of n-butylacetate were experimented. The lower flash points of n-butylacetate by using the Setaflash and Pensky-Martens closed-cup testers were $24^{\circ}C$ and $26^{\circ}C$, respectively. The flash points of n-butylacetate using the Tag and Cleveland open cup testers are measured $31^{\circ}C$ and $40^{\circ}C$, respectively. And the fire points of n-butylacetate by the Tag and Cleveland open cup testers were measured $32^{\circ}C$ and $41^{\circ}C$. The AIT of n-butylacetate measured by the ASTM 659E tester was measured as $411^{\circ}C$. The lower explosion limit of lower flash point $24^{\circ}C$, which was measured by the Setaflash tester, was calculated to be 1.40 vol%. Also, the upper explosion limit of upper flash point $67^{\circ}C$ the Setaflash tester was calculated to be 12.5 vol%.

The Measurement and Prediction of Flash Point for Binary Mixtures of Methanol, Ethanol, 2-Propanol and 1-Butanol at 101.3 kPa (Methanol, Ethanol, 2-Propanol 그리고 1-Butanol 이성분 혼합계에 대한 101.3 kPa에서의 인화점 측정 및 예측)

  • Oh, In Seok;In, Se Jin
    • Fire Science and Engineering
    • /
    • v.29 no.5
    • /
    • pp.1-6
    • /
    • 2015
  • Flash point is one of the most important variables used to characterize fire and explosion hazard of liquids. The lower flash point data were measured for the binary systems {methanol + 1-butanol}, {ethanol + 1-butanol} and {2-propanol + 1-butanol} at 101.3 kPa. Experiments were performed according to the standard test method (ASTM D 3278) using a SETA closed cup flash point tester. The measured flash points were compared with the predicted values calculated using the following activity coefficient models: Wilson, Non-Random Two Liquid (NRTL), and UNIversal QUAsiChemical (UNIQUAC). The measured FP data agreed well with the predicted values of Raoult's law, Wilson, NRTL and UNIQUAC models. The average absolute deviation between the predicted and measured lower FP was less than 1.14 K.

Prediction of Upper Explosion Limits (UEL) of Acids and Ketones by Using Setaflash Tester (Setaflash 장치를 이용한 산류와 케톤류의 폭발상한계 예측)

  • Ha, Dong-Myeong
    • Fire Science and Engineering
    • /
    • v.25 no.2
    • /
    • pp.114-119
    • /
    • 2011
  • Explosion limit and flash point are the major combustion properties used to determine the fire and explosion hazards of the flammable substances. In this study, in order to predict upper explosion limits (UEL) for acids and ketones, the upper flash point of these were measured under the VLE (vaporliquid equilibrium) state by using Setaflash closed cup tester (ASTM D3278). The UELs calculated by Antoine equation by using the experimental upper flash point are usually lower than the several reported UELs. From the given results, using the proposed experimental and predicted method, it is possible to research the upper explosion limits of the other flammable substances.

A Study on the Appropriateness of the Combustible Properties of MSDS for o-Cresol (오토크레졸의 MSDS 연소특성치의 적정성 연구)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.2
    • /
    • pp.21-26
    • /
    • 2015
  • For the safe handling of o-cresol, this study was investigated the explosion limits of o-cresol in the reference data. The flash points and AITs(auto-ignition temperatures) by ignition delay time were experimented. The lower flash points of o-cresol by using closed-cup tester were experimented in $77^{\circ}C$ and $80^{\circ}C$. The lower flash points of o-cresol by using open cup tester were experimented in $86^{\circ}C$ and $87^{\circ}C$. This study measured relationship between the AITs and the ignition delay times by using ASTM E659 tester for o-cresol. The AIT of o-cresol was experimented as $495^{\circ}C$. The lower explosion limit(LEL) by the measured the lower flash point for o-cresol was calculated as 1.27 Vol%.

The Measurement of Combustible Properties of Acetic Anhydride for the Compatibility of MSDS (MSDS 적정성을 위한 아세틱안하이드리드의 연소특성치 측정)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.4
    • /
    • pp.85-90
    • /
    • 2014
  • For the safe handling of acetic anhydride, this study was investigated the explosion limits of acetic anhydride in the reference data. And the lower flash points, upper flash points, and AITs(auto-ignition temperatures) by ignition delay time were experimented. The lower and upper explosion limits of acetic anhydride by the investigation of the literatures recommended 2.9 Vol% and 10.3 Vol.%, respectively. The lower flash point of acetic anhydride by using Setaflash closed-cup tester was experimented $49^{\circ}C$. The lower flash point acetic anhydride by using Tag and Cleveland open cup tester were experimented $55^{\circ}C$and $62^{\circ}C$, respectively. Also, this study measured relationship between the AITs and the ignition delay times by using ASTM E659 tester for acetic anhydride. The experimental AIT of acetic anhydride was $350^{\circ}C$.