• Title/Summary/Keyword: Closed-cup tester

Search Result 61, Processing Time 0.019 seconds

Investigation of Reliability of Flash Points and Autoignition Temperatures of Acids (산류(Acids)의 인화점과 최소자연발화온도의 신뢰성 고찰)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.2
    • /
    • pp.42-47
    • /
    • 2009
  • The flash point and the AIT(auto-ignition temperature) are the most important combustible properties used to determine the potential for the fire and explosion hazards of flammable material. In order to know the accuracy of data in MSDS(Material Safety Data Sheet), the flash point of n-acids were measured by using Pensky-Martens closed cup tester(ASTM D93), Setaflash closed cup tester(ASTM D3278), Tag open cup tester(ASTM D1310) and Cleveland open cup tester(ASTM D92). Also, the AIT of n-acids were measured by using ASTM E659-78 tester. The measured the flash points and the AIT were compared with literatures and MSDS in KOSHA. The measured the flash points and the AIT were different from those in literatures and MSDS. Therefore, This paper shows that it is needed to investigate the MSDS compatibility of n-acids for the fire safety objectives.

The Investigation of Compatibility of Combustible Characteristics for n-Tridecane (노말트리데칸의 연소특성치의 적정성 고찰)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.3
    • /
    • pp.83-88
    • /
    • 2012
  • For the safe handling of n-tridecane, the lower flash points and AITs(auto-ignition temperatures) by ignition delay time were experimented. Also lower explosion limits by the lower flash points were calculated. The lower flash points of n-tridecane by using closed-cup tester were experimented $92^{\circ}C$ and $96^{\circ}C$. The lower flash points and fire point of n-tridecane by using open cup tester were experimented 100 oC and 103 oC, respectively. This study measured relationship between the AITs and the ignition delay times by using ASTM E659 apparatus for n-tridecane. The experimental AIT of n-tridecane was 223 oC. The calculated lower explosion limit by using measured lower flash point 92 oC for n-tridecane was 0.6 Vol.%.

The Measurement and Investigation of Fire and Explosion Characteristics of Isopropyl Alcohol (이소프로필 알코올의 화재 및 폭발 특성치의 측정 및 고찰)

  • Ha, Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.3
    • /
    • pp.8-15
    • /
    • 2012
  • For the safe handling of isopropyl alcohol, the explosion limits were investigated. The lower flash points, upper flash points, fire point, and AITs(autoignition temperatures) by ignition time delay for isopropyl alcohol were experimented. By using literature data, the lower and upper explosion limits of isopropyl alcohol were recommended as 2.0 and 12.0 vol%, respectively. The lower flash points of isopropyl alcohol were experimented $12{\sim}14^{\circ}C$ by using closed-cup tester and $18{\sim}19^{\circ}C$ by using open cup tester. And the upper flash points of isopropyl alcohol was experimented $38^{\circ}C$ by using Setaflash closed-cup tester. This study measured relationship between the AITs and the ignition delay times by using ASTM E659 apparatus was $463^{\circ}C$.

Risk Assessment by Means of Measurement of Combustible Characteristics for n-Nonanol (노말노난올의 연소특성치 측정에 의한 위험성 평가)

  • Ha, Dong-Myeong
    • Fire Science and Engineering
    • /
    • v.26 no.2
    • /
    • pp.84-89
    • /
    • 2012
  • For the safe handling of n-nonanol, this study was investigated the explosion limits of n-nonanol in the reference data. The flash points and AITs (autoignition temperatures) by ignition delay time were experimented. As a results, the lower and upper explosion limits of n-nonanol recommended 0.8 Vol.% and 6.1 Vol.%, respectively. The lower flash points of n-nonanol by using closed-cup tester were experimented $94{\sim}97^{\circ}C$. The lower flash points of n-nonanol by using open cup tester were experimented $103{\sim}104^{\circ}C$. This study measured relationship between the AITs and the ignition delay times by using ASTM E659-78 apparatus for n-nonanol. The experimental AIT of n-nonanol was $270^{\circ}C$.

Flash Point Calculation for n-Octane+n-Decane and n-Octane+n-Dodecane by UNIFAC Group Contribution Model (UNIFAC 그룹 기여 모델에 의한 n-Octnae+n-Decane 계와 n-Octane+n-Dodecane 계의 인화점 계산)

  • Ha, Dong-Myeong;Lee, Sungjin
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.4
    • /
    • pp.86-91
    • /
    • 2015
  • The flash point is used to categorize inflammable liquids according to their relative flammability. Such a categorization is important for the safe handling, storage, and transportation of inflammable liquids. The flash point temperature of two binary liquid mixtures(n-octane+n-decane and n-octane+n-dodecane) has been measured for the entire concentration range using Seta-flash closed cup tester based on the ASTM D3278 method. The closed cup flash point temperature was estimated using the UNIFAC(Universal Functional Activity Coefficient) group contribution model. The experimentally derived flash point was also compared with the predicted flash point from the UNIFAC model. The UNIFAC model is able to estimate the flash point fairly well for n-octane+n-decane mixture and n-octane+n-dodecane mixture.

Flash Points of Water+n-Propanol System Using Closed-Cup Measurement Apparatus (밀폐계 측정장치를 이용한 물-노말프로판올 계의 인화점)

  • Ha, Dong-Myeong;Choi, Yong-Chan;Lee, Sung-Jin
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.4
    • /
    • pp.140-145
    • /
    • 2002
  • The Flash Point is one of the most important combustible properties used to determine the potential for fire and explosion hazards of chemical materials. An accurate knowledge of the flash point is important in developing appropriate preventive and control measures in industrial fire protection. The lower flash points for the Water + n-Propanol systems were measured by using Pensky-Martens closed cup tester. The experimental data were compared with the values calculated by the laws of Raoult and van laar equation. The calculated values based on the van Laar equation were found to be better than those based on the Raoult's law.

Measurement of Flash Points and Autoignition Temperatures for Xylene Isomers (크실렌 이성질체의 인화점과 최소자연발화온도의 측정)

  • Ha, Dong-Myeong;Lee, Sung-Jin
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.4
    • /
    • pp.40-45
    • /
    • 2009
  • In order to investigate the compatibility of data in MSDS(Material Safety Data Sheet), the flash point of xylene isomer was measured by using Pensky-Martens closed cup (ASTM D93), Setaflash closed cup(ASTM D3278), Tag open cup(ASTM D1310), and Cleveland open cup (ASTM D92) testers. Also, the AITs(autoignition temperatures) of xylene isomers were measured by using ASTM E659-78 tester. The measured the flash points and the AITs were compared with literatures and MSDS in KOSHA(Korea Occupational Safety and Health Agency). The measured the flash points and the AITs were different from those in literatures and MSDS. As a result, this paper is shown that it is needed to investigate combustion characteristics of xylene isomer for the fire safety objectives.

  • PDF

The Measurement and Investigation of Fire and Explosion Characteristics of Cyclohexanone (사이클로헥사논의 화재 및 폭발 특성치의 측정 및 고찰)

  • Ha, Dong-Myeong
    • Fire Science and Engineering
    • /
    • v.25 no.4
    • /
    • pp.28-34
    • /
    • 2011
  • For the safe handling of cyclohexanone, the explosion limits at $25^{\circ}C$ were investigated. The lower flash points and AITs (auto-ignition temperatures) by ignition time delay for cyclohexanone were experimented. By using the literatures data, the lower and upper explosion limits of cyclohexanone recommended 1.1 Vol.% ($100^{\circ}C$) and 9.4 Vol.%, respectively. The lower flash points of cyclohexanone were experimented $42{\sim}43^{\circ}C$ by using closed-cup tester and $49{\sim}51^{\circ}C$ by using open cup tester. This study measured relationship between the AITs and the ignition delay times by using ASTM E659-78 apparatus for cyclohexanone and the experimental AIT of cyclohexanone was $415^{\circ}C$.

The Investigation of Combustible Hazard by Measurement of Flash Point and Autoignition Temperature of n-Dodecane (노말도데칸의 인화점과 최소발화온도 측정에 의한 연소위험성 고찰)

  • Ha, Dong-Myeong
    • Fire Science and Engineering
    • /
    • v.25 no.2
    • /
    • pp.120-125
    • /
    • 2011
  • For the safe handling of n-dodecane, the explosion limits were investigated and the lower flash points and AITs (autoignition temperatures) by ignition delay time were experimented. By using the literatures data, the lower and upper explosion limits of n-dodecanee recommended 0.6 Vol.% and 4.7 Vol.%, respectively. The lower flash points of n-dodecane by using closed-cup tester were experimented $77^{\circ}$ and $80^{\circ}C$. The lower flash points of n-dodecane by using open cup tester were experimented $84^{\circ}C$ and $87^{\circ}C$. This study measured relationship between the AITs and the ignition delay times by using ASTM E659-78 apparatus for n-dodecane. The experimental AIT of n-dodecane was $222^{\circ}C$.

The Measurement of Flash Point of Water-Methanol and Water-Ethanol Systems Using Seta Flash Closed Cup Tester (Seta Flash 밀폐식 장치를 이용한 Water-Methanol과 Water-Ethanol계의 인화점 측정)

  • Ha, Dong-Myeong;Park, Sang Hun;Lee, Sungjin
    • Fire Science and Engineering
    • /
    • v.29 no.2
    • /
    • pp.39-43
    • /
    • 2015
  • The flash point is the major property to characterize fire and explosion hazard of liquid mixtures. The flash point is the lowest temperature at which a liquid gives off enough vapor to form a flammable air-vapor mixture. The flash points of two aqueous mixtures, water-methanol and water-ethanol, were measured using Seta flash closed cup tester. A prediction method based on activity coefficient models, Wilson and UNIQUAC equations, was used to calculate the flash point. The calculated flash points were compared to the results by the calculating method using Raoult's law. The calculated values based on activity coefficients models were found to be better than those based on the Raoult's law.