• Title/Summary/Keyword: Closed-Section Rib

Search Result 5, Processing Time 0.022 seconds

Increasing Effect in Local Buckling Strength of Laminated Composite Plates Stiffened with Closed-section Ribs under Uniaxial Compression (폐단면리브로 보강된 일축압축을 받는 복합적층판의 국부좌굴강도 증가효과)

  • Hwang, Su-Hee;Kim, Yu-Sik;Choi, Byung-Ho
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.4 no.2
    • /
    • pp.39-44
    • /
    • 2013
  • This study is aimed to examine the influence of the rotational stiffness of U-shaped ribs on the local buckling behaviors of laminated composite plates. Applying the orthotropic plates with eight layers of the layup $[(0^{\circ})4]s$ and $[(0^{\circ}/90^{\circ})2]s$, 3-dimensional finite element models for the U-rib stiffened plates were setup by using ABAQUS and then a series of eigenvalue analyses were conducted. There is a need to develope a simple design equation to establish the rotational stiffness effect, which could be easily quantified by comparing the theoretical critical stress equation for laminated composite plates with elastic restraints based on the Classical laminated plate theory. Through the parametric numerical studies, it is confirmed that there should clearly exist an increasing effect of local plate buckling strength due to the rotational stiffness by closed-section ribs. An applicable coefficient for practical design should be verified and proposed for future study. This study will contribute to the future study for establishing an increasing coefficient for the design strength and optimum design of U-rib stiffened plates.

Buckling Behavior of Plates Stiffened with the New Type Ribs (새로운 형태의 리브를 갖는 보강판의 좌굴거동)

  • Chu, Seok Beom;Lee, Pil Nam
    • Journal of Korean Society of Steel Construction
    • /
    • v.30 no.1
    • /
    • pp.59-66
    • /
    • 2018
  • In this study, the parametric analysis for the buckling behavior of plates stiffened with the new type(${\Box}$ type) ribs was performed. Changes of the buckling capacity according to dimensions of ${\Box}$ type ribs show certain behaviors, so that the system to find the section of ${\Box}$ type ribs under the specific buckling capacity can be proposed. Applying this system to the steel deck of existing bridges, more economic sections of ${\Box}$ type ribs rather than that of closed ribs can be obtained. Therefore, the economic section of steel deck having the required buckling capacity can be designed by using the proposed system of ${\Box}$ type ribs.

A Study on the New Type Rib of Steel Deck Plates (새로운 형태의 강바닥판 리브에 대한 연구)

  • Chu, Seok Beom;Park, Jong Hae
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.6
    • /
    • pp.605-615
    • /
    • 2014
  • The purpose of this study is to propose an economic new type rib by applying plate stiffening methods of the corrugated plate and the honey-comb sandwich panel to the steel deck plate and comparing the new type rib with existing open and closed ribs. The trapezoidal corrugated type, ㄹ type, honey-comb type and ㅁ type ribs are considered as new type ribs and the moment and the steel volume are compared with that of open ribs and closed ribs. The results shows that the honey-comb type and ㅁ type ribs are good in aspects of economic feasibility and the ㅁ type is better than the honey-comb type. To make the ㅁ type rib applicable to the steel deck plate, the sensitivity analysis and parametric study are performed and the system to select the proper section under the particular stress condition is established. The closed rib of real bridges is compared with the ㅁ type rib of the proposed system and it is known that the new type rib is more economic. Therefore, more economic steel deck plates can be achieved by using the system proposed in this study for the plate stiffened with the new ㅁ type rib.

Evaluation of Local Buckling Strength of Stiffened Plates under Uni-axial Compression due to Closed-section Rib Stiffness (폐단면리브 강성에 따른 일축압축을 받는 보강판의 국부좌굴강도 평가)

  • Choi, Byung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.2
    • /
    • pp.949-954
    • /
    • 2013
  • Generally, structural plates under axial compression should be stiffened by longitudinal stiffeners in order to enhance the buckling strength. Though U-shaped ribs would be more efficient for the stiffened plate system, there is in the absence of a proper design guides or relevant research results. Thus this study is aimed to examine the local buckling behavior of stiffened plates with U-section ribs. 3-dimensional analysis models which include 3 types of U-shaped longitudinal stiffeners were simulated by using the finite element code ABAQUS. The bifurcation analysis were conducted and then the buckling analysis results are compared with the theoretical equation values. It is found that the rotational constraint effect provided by the U-ribs should increase the local buckling strength. Some features drawn from a series of parametric study results are summarized.

Buckling Analysis of Laminated Composite Plates Longitudinally Stiffened with U-Shaped Ribs (축방향 압축을 받는 폐단면리브로 보강된 복합적층판의 좌굴 해석연구)

  • Choi, Byung-Ho;Choi, Su-Young;Park, Sang-Kyun
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.3 no.1
    • /
    • pp.29-34
    • /
    • 2012
  • Even though the longitudinally stiffened laminated composite plates with closed section ribs should be an effective system for axially compressed members, the existing researches on the applications of closed-section ribs, especially for the laminated composite plates, are not sufficient. This study is aimed to examine the influence of the sectional stiffness of U-shaped ribs on the buckling modes and strengths of laminated composite plates. Applying the orthotropic plates with eight layers of the layup $[(0^{\circ})_4]_s$ and $[(0^{\circ}/90^{\circ})_2]_s$, 3-dimensional finite element models for the U-rib stiffened plates were setup by using ABAQUS and then a series of eigenvalue analyses were conducted. From the parametric studies, the minimum required ply thicknesses as well as the buckling strengths were presented for the analysis models. The buckling strengths were compared with the theoretical critical stress equation for simply supported plates based on the Classical laminated plate theory. This study will contribute to the future study for evaluating the minimum required stiffness and optimum design of U-rib stiffened plates.