• Title/Summary/Keyword: Closed-Die

Search Result 123, Processing Time 0.024 seconds

Study on the Deformation of Die and Product in Closed Die Upsetting (밀폐 업셋팅에서 금형과 제품 변형에 관한 연구)

  • 이강희;박용복
    • Transactions of Materials Processing
    • /
    • v.8 no.6
    • /
    • pp.563-568
    • /
    • 1999
  • The study has been performed for the relation between die and product in closed die upsetting by the experiment. The strain of die has been given by the simple experiment using the strain gauge located at the outer surface of die and the deformation history of die and product has been given by the experiment and Lame's formula. The inner pressure of die causes the deformation of die that affects the accuracy of dimension and shape of product. The product with accurate dimension and shape can be obtained by analysing elastic deformation of die during upsetting process. The deformation of die during metal forming process has been usually predicted by the experience of industrial engineers or finite element analysis. But it is difficult to predict the dimension of product at unloading and ejected states. The study has given useful result for the deformation history of die and product through the experiment and Lame's formula at closed die upsetting, and can be applied in the die design for product with accurate dimension.

  • PDF

Study on the Deformation of Die and Product in Closed Die Upsetting (밀폐 업셋팅에서 금형과 제품 변형에 관한연구)

  • 박용복
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.94-97
    • /
    • 1999
  • The study has been performed for the relation between die and product in closed die upsetting by the experiment. the strain of die has been given by the simple experiment using the strain gauge located at the outer surface of die and the deformation history of die and product has been given by the experiment and Lame's formula. the product with accurate dimension and shape can be obtained by analysing elastic deformation of die during upsetting process. The deformation of die during metal forming process has been given by the experiment and lame's formula. The product with accurate dimension and shape can be obtained by analysing elastic deformation of die during upsetting process. The deformation of die during metal forming process has been usually predicted by the experience of industrial engineers of finite element analysis. But it is difficult to predict the dimension of product at unloading and ejected states. The study has given useful result for the deformation history of die and product through the experiment and Lame's formula at closed die upsetting and can be applied in the die design for product with accurate dimension.

  • PDF

Finite Element Analysis for Design of Closed Die Forging Process of a Bevel Gear (베벨기어의 밀폐단조 공정설계를 위한 유한요소해석)

  • Kim, Yohng-Jo;Park, Sung-Dae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.1
    • /
    • pp.92-99
    • /
    • 2003
  • Bevel gears are important mechanical parts to transmit power in transportation system high precision parts like bevel gears might be manufactured by closed die forging process for dimensional accuracy. Closed die forging of bevel gears offers the high quality and good mechanical properties and also leads to considerable cost saving. To determinate the proper closed-die forging process for bevel gear forms, three-dimensional finite element simulation for the progressive forging process was earned out and also the simulation results were compared with experimental results.

  • PDF

A study on the application of closed-die forging method for the large crank throw (대형 크랭크 스로우의 형단조 적용 연구)

  • Song M. C.;Shin S. B.;Kim B. H.;Ju S. H.;Lee M. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.180-183
    • /
    • 2005
  • The purpose of this study is to evaluate a closed-die forging method for large crank throw using analytical and numerical approaches. A closed-die forging equipment with wedge and links was proposed to forge large crank throw using kinematic analysis. The minimum press capacity for the closed-die forging was established using the comprehensive FEA.

  • PDF

Experimental and Numerical Study on Closed Die Hot Forging of a Large Crankshaft (대형 크랭크샤프트의 형단조에 관한 실험적 및 수치적 연구)

  • Cho, B.J.;Lee, M.C.;Kim, H.T.;Park, T.H.;JeGal, Y.J.;Choi, I.S.;Joun, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.263-266
    • /
    • 2008
  • We apply a closed die forging technology to a large crankshaft of which forging weight amounts to 850kg. 40ton counter-blow hammer forging machine is used. The forging process is optimized to reduce the forming load using finite element simulation. AFDEX 3D is used for forging simulation. The experiment is compared with finite element prediction and a good agreement is observed. The successful development of a large crankshaft by the closed die forging technology will contribute to opening a new area of closed-die forging application and to enhancing competitiveness of national machinery industries especially including ship part and power generation industries.

  • PDF

Dimensional changes of workpiece and die in cold upsetting by the closed-die at each stage (냉간 밀폐 업세팅시 금형과 단조소재의 성형 단계별 치수 변화)

  • 이영선;권용남;천세환;이정환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.38-43
    • /
    • 2003
  • The dimensions of die and workpiece are changed continuously during loading, unloading, and ejecting stage. Finally, to predict precisely the dimension of forged part and get the die dimension for the net-shape components, the analysis of die and workpiece should be evaluated from the loading to ejecting. Therefore, the experimental and FEM analysis are peformed to investigate the elastic characteristics at workpiece and die in the closed-die upsetting for ferrous material. FE techniques are proposed to consider the unloading and ejecting stages and estimate more precisely the dimension of forged part and die. The dimensional changes for the workpiece were evaluated quantatively during loading, unloading, and ejecting stages. The strains measured by the strain gages were compared with the estimated values by the FEM.

  • PDF

An Analysis of Hot Closed-Die Forging to Reduce Forging Load (단조하중 감소를 위한 열간 형단조공정 해석)

  • 김헌영;김중재;김낙수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.2970-2981
    • /
    • 1993
  • In hot closed-die forging the load increases rapidly near the final stage. Preforming operation is important to both the sound final forging and die-service life. In this study, the material flows during preforming and final forging are investigated. The physical modeling with Plasticine as a model material showed clear flow patterns. The forging process were numerically simulated by the finite element method with the isothermal and the non-isothermal models. The flow patten of the isothermal simulation showed good agreements with the experiments. Temperature changes and pressure distributions on the die surfaces during one cycle of the forging process were obtained from the non-isothermal simulation. High pressure and temperature were developed at certain areas of the die surfaces. It was concluded that those areas usually coincide with each other and should be distributed by the preforming operations to enhance the die life.

Dimensional Changes of Workpiece and Die in Cold Upsetting by the Closed-Die at Each Stage (냉간 밀폐 업세팅시 금형과 단조소재의 성형 단계별 치수 변화)

  • 이영선;권용남;천세환;이정환
    • Transactions of Materials Processing
    • /
    • v.12 no.7
    • /
    • pp.662-667
    • /
    • 2003
  • The dimensions of die and workpiece are changed continuously during loading, unloading, and ejecting stage. Finally, to predict precisely the dimension of forged part and get the die dimension for the net-shape components, the analysis of die and workpiece should be evaluated from the loading to ejecting. Therefore, the experimental and FEM analyses are performed to investigate the elastic characteristics at workpiece and die in the closed-die upsetting for ferrous material FE techniques are proposed to consider the unloading and ejecting stages and estimate more precisely the dimension of forged part and die. The dimensional changes fur the workpiece were evaluated quantatively during loading, unloading, and ejecting stages. The strains measured by the strain gages were compared with the estimated values by the FEM.

Closed Forging of Car Gear Blanks on Hot Die Presses

  • yujian Wu;tingsong Wu;yipping Zhao;ji Li
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10b
    • /
    • pp.127-132
    • /
    • 2003
  • This article mainly introduces the research of closed forging on 20MN hot die forging presses. After transforming of the equipments, optimizing of die design and improving of die-manufacturing precision, gear blanks used in car gearbox have been forged out without fins successfully.

  • PDF

Study on the Closed-die Forging Process for Turbine Disk of Small Gas Turbine Engine (소형 가스터빈용 터빈 디스크의 형단조 공정 연구)

  • Kim, D.K.;Kim, Y.D.;Kim, D.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.427-430
    • /
    • 2007
  • Gas turbine disk components have been used by Ni-base superalloys which have high temperature strength for enduring stress induced by high speed rotation. This study introduced the overview of development strategy of precision forging of turbine disk and closed-die forging process for manufacturing good quality gas turbine disk. To make superior quality turbine disk, it is important to select optimal forging process conditions like preform shape, die shape and forging temperature etc. In this paper, closed-die forging process has been studied through the rigid-plastic finite element simulation. Proposed forging process can be used for the successful manufacturing of small-size gas turbine disk.

  • PDF