• Title/Summary/Keyword: Closed orbit measurement

Search Result 3, Processing Time 0.02 seconds

Beam position measurement system at HIRFL-CSRm

  • Min Li ;Guoqing Xiao ;Ruishi Mao ;Tiecheng Zhao ;Youjin Yuan ;Weilong Li ;Kai Zhou;Xincai Kang;Peng Li ;Juan Li
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1332-1341
    • /
    • 2023
  • Beam position measurement system can not only provide the beam position monitoring, but also be used for global orbit correction to reduce beam loss risk and maximize acceptance. The Beam Position Monitors (BPM) are installed along the synchrotron to acquire beam position with the front-end electronics and data acquisition system (DAQ). To realize high precision orbit measurement in the main heavy ion synchrotron and cooling storage ring of heavy-ion research facility in Lanzhou (HIRFL-CSRm), a series of alignment and calibration work has been implemented on the BPM and its DAQ system. This paper analyzed the tests performed in the laboratory as well as with beam based on the developed algorithms and hardware. Several filtering algorithms were designed and implemented on the acquired BPM raw data, then the beam position and resolution were calculated and analyzed. The results show that the position precision was significantly improved from more than 100 ㎛ to about 50 ㎛ by implementing the new designed filtering algorithm. According to the analyzation of the measurement results and upcoming physical requirements, further upgrade scheme for the BPM DAQ system of CSRm based on field programmable gate array (FPGA) technology was proposed and discussed.

Performance of a Closed-Loop Power Control Using a Variable Step-size Control Scheme in a DS/CDMA LEO Mobile Satellite System (DS/CDMA 저궤도 이동 위성 시스템에서 가변 스텝사이즈 조절 방식 폐루프 전력제어의 성능분석)

  • 전동근;이연우;홍선표
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.16-24
    • /
    • 2000
  • In this paper the performance of a closed-loop power control scheme using variable step size decision method for DS/CDMA based-low earth orbit(LEO) mobile satellite systems in which the long round trip delay is a dominant performance degradation factor is evaluated. Because there are fundamental differences in the characteristics between the LEO mobile satellite channel and terrestrial mobile channel, such as long round trip delay and different elevation angle, these factors are considered in channel modeling based on the European Space Agency(ESA) measurement data. Since the round trip delay (from the mobile terminal to the gateway station via satellite) is typically 10∼20ms in low altitude satellite channels, closed-loop power control is much less effective than it is on a terrestrial channel. Thus, the adaptive power control scheme using a variable step size control is essential for overcoming the long round trip delay and fading due to the elevation angle. It is shown that the standard deviation of signal to interference ratio(SIR) adopting a variable step size closed-loop power control scheme is much less than that of a fixed step size closed-loop power control. Furthermore, we have driven the conclusion that the measurement interval of power control commands is optimal choice when it is twice the round trip delay.

  • PDF

A Preliminary Development of Real-Time Hardware-in-the-Loop Simulation Testbed for the Satellite Formation Flying Navigation and Orbit Control (편대비행위성의 항법 및 궤도제어를 위한 실시간 Hardware-In-the-Loop 시뮬레이션 테스트베드 초기 설계)

  • Park, Jae-Ik;Park, Han-Earl;Shim, Sun-Hwa;Park, Sang-Young;Choi, Kyu-Hong
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.1
    • /
    • pp.99-110
    • /
    • 2009
  • The main purpose of the current research is to developments a real-time Hardware In-the-Loop (HIL) simulation testbed for the satellite formation flying navigation and orbit control. The HIL simulation testbed is integrated for demonstrations and evaluations of navigation and orbit control algorithms. The HIL simulation testbed is composed of Environment computer, GPS simulator, Flight computer and Visualization computer system. GPS measurements are generated by a SPIRENT GSS6560 multi-channel RF simulator to produce pseudorange, carrier phase measurements. The measurement date are transferred to Satrec Intiative space borne GPS receiver and exchanged by the flight computer system and subsequently processed in a navigation filter to generate relative or absolute state estimates. These results are fed into control algorithm to generate orbit controls required to maintain the formation. These maneuvers are informed to environment computer system to build a close simulation loop. In this paper, the overall design of the HIL simulation testbed for the satellite formation flying navigation and control is presented. Each component of the testbed is then described. Finally, a LEO formation navigation and control simulation is demonstrated by using virtual scenario.