• Title/Summary/Keyword: Closed Rectangular Cavity

Search Result 3, Processing Time 0.023 seconds

Active Noise Control of a Closed Rectangular Cavity Using FXLMS Algorithms (FXLMS 알고리듬을 이용한 사각밀폐공간의 능동소음제어)

  • Ryu, Kyung-Wan;Hong, Chin-Suk;Shin, Chang-Joo;Jeong, Weui-Bong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.11
    • /
    • pp.983-990
    • /
    • 2011
  • This paper investigates active noise control(ANC) of a rectangular cavity using single channel filtered-x least mean square(FXLMS) algorithms to globally reduce the interior noise. To obtain the global reduction of the interior noise, multichannel active control should be incorporated in general. We, however, examined firstly the optimal location of the secondary source that produces a global reduction of the interior noise field using single channel control. We then investigated the frequency characteristics of the reduction to yield the effective frequency band of the active control system. It follows that the secondary source should be located as close to the primary source as possible in order to obtain the global reduction.

Active Noise Control of Closed Rectangular Cavity using the FXLMS Algorithms (FXLMS 알고리듬을 이용한 사각밀폐공간의 능동소음제어)

  • Ryu, Kyung-Wan;Hong, Chin-Suk;Jeong, Wei-Bong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.247-249
    • /
    • 2009
  • This paper investigates active noise control(ANC) of a rectangular cavity using single channel filtered-x least mean square(FXLMS) algorithms to reduce interior noise globally. To obtain global reduction of the interior noise, multichannel active control should be incorporated in general. We, however, examined firstly the optimal location of the secondary speaker that produces a global reduction of the interior noise field. We then investigated the frequency characteristics of the reduction to yield the effective frequency band of the active control system. It follows that the secondary speaker should be located as close to the primary source as possible in order to obtain global reduction.

  • PDF

Analysis of the Sound Field in an Enclosure on the Speaker System Using the Finite Element Method (유한요소법을 이용한 스피커 시스템 밀폐함 내부의 음장해석)

  • Lee, Woo-Seop;Kim, Jung-Rag;Chang, Ho-Gyeong;Kim, Ye-Hyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.26-32
    • /
    • 1997
  • In this study, the interior acoustic field of a speaker system with rectangular closed cavity and its effect on the impedance and the sound pressure reponses are investigated by applying the finite element method to the rectangular enclosure. Based on a good agreement with the theoretical and the experimental, it is founded that FEM is useful method for the development of a speaker system generating the diverse mode.

  • PDF