• Title/Summary/Keyword: Closed Loop System Identification

Search Result 62, Processing Time 0.015 seconds

Active neuro-adaptive vibration suppression of a smart beam

  • Akin, Onur;Sahin, Melin
    • Smart Structures and Systems
    • /
    • v.20 no.6
    • /
    • pp.657-668
    • /
    • 2017
  • In this research, an active vibration suppression of a smart beam having piezoelectric sensor and actuators is investigated by designing separate controllers comprising a linear quadratic regulator and a neural network. Firstly, design of a smart beam which consists of a cantilever aluminum beam with surface bonded piezoelectric patches and a designed mechanism having a micro servomotor with a mass attached arm for obtaining variations in the frequency response function are presented. Secondly, the frequency response functions of the smart beam are investigated experimentally by using different piezoelectric patch combinations and the analytical models of the smart beam around its first resonance frequency region for various servomotor arm angle configurations are obtained. Then, a linear quadratic regulator controller is designed and used to simulate the suppression of free and forced vibrations which are performed both in time and frequency domain. In parallel to simulations, experiments are conducted to observe the closed loop behavior of the smart beam and the results are compared as well. Finally, active vibration suppression of the smart beam is investigated by using a linear controller with a neural network based adaptive element which is designed for the purpose of overcoming the undesired consequences due to variations in the real system.

Modelling and simulation of a closed-loop electrodynamic shaker and test structure model for spacecraft vibration testing

  • Waimer, Steffen;Manzato, Simone;Peeters, Bart;Wagner, Mark;Guillaume, Patrick
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.2
    • /
    • pp.205-223
    • /
    • 2018
  • During launch a spacecraft is subjected to a variety of dynamical loads transmitted through the launcher to spacecraft interface or air-born transmission excitations in the acoustic pressure field inside the fairing. As a result, spacecraft are tested on ground to ensure and demonstrate the global integrity of the structure against these loads, to screen the flight hardware for quality of workmanship and to validate mathematical models. This paper addresses the numerical modelling and simulation of the low frequency sine and random vibration tests performed on electrodynamic shaker facilities to comprise the mechanical-borne transmission loads through the launcher to spacecraft interface. Consequently, the paper reviews techniques and methodologies to derive a reliable and representative coupled virtual vibration testing simulation environment based on experimental data. These technologies are explored with the main objectives to ensure a stable, reliable and accurate control while testing. As a result, the use of the derived simulation models in combination with the added value of improved control and signal processing algorithms can lead to a safer and smoother vibration test control of the entire environmental test campaign.