• Title/Summary/Keyword: Cloning efficiency

Search Result 90, Processing Time 0.019 seconds

The Question of Abnormalities in Mouse Clones and ntES Cells

  • Wakayama, Teruhiko
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.7-8
    • /
    • 2003
  • Since it was first reported in 1997, somatic cell cloning has been demonstrated in several other mammalian species. On the mouse, it can be cloned from embryonic stem (ES) cells, fetus-derived cells, and adult-derived cells, both male and female. While cloning efficiencies range from 0 to 20%, rates of just 1-2% are typical (i.e. one or two live offspring per one hundred initial embryos). Recently, abnormalities in mice cloned from somatic cells have been reported, such as abnormal gene expression in embryo (Boiani et al., 2001, Bortvin et al., 2003), abnormal placenta (Wakayama and Yanagimachi 1999), obesity (Tamashiro et ai, 2000, 2002) or early death (Ogonuki et al., 2002). Such abnormalities notwithstanding, success in generating cloned offspring has opened new avenues of investigation and provides a valuable tool that basic research scientists have employed to study complex processes such as genomic reprogramming, imprinting and embryonic development. On the other hand, mouse ES cell lines can also be generated from adult somatic cells via nuclear transfer. These 'ntES cells' are capable of differentiation into an extensive variety of cell types in vitro, as well assperm and oocytes in vivo. Interestingly, the establish rate of ntES cell line from cloned blastocyst is much higher than the success rate of cloned mouse. It is also possible to make cloned mice from ntES cell nuclei as donor, but this serial nuclear transfer method could not improved the cloning efficiency. Might be ntES cell has both character between ES cell and somatic cell. A number of potential agricultural and clinical applications are also are being explored, including the reproductive cloning of farm animals and therapeutic cloning for human cell, tissue, and organ replacement. This talk seeks to describe both the relationship between nucleus donor cell type and cloning success rate, and methods for establishing ntES cell lines. (중략)

  • PDF

The Utility of TAR Vectors Used for Selective Gene Isolation by TAR Cloning. (TAR Cloning에 의한 선별적 유전자 분리에 사용되는 TAR Vectors의 유용성에 관한 연구)

  • 박정은;이윤주;정윤희;김재우;김승일;김수현;박인호;선우양일;임선희
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.4
    • /
    • pp.322-328
    • /
    • 2003
  • The Transformation-Associated Recombination (TAR) cloning technique allows selective isolation of chromosomal regions and genes from complex genomes. The procedure requires knowledge of relatively small genomic sequences that reside adjacent to the chromosomal region of interest. This technique involves homologous recombination during yeast spheroplast transformation between genomic DNA and a TAR vector that has 5'and 3' gene targeting sequences. In this study, we examined the minimum size of specific hooks required for a single-copy gene isolation and compared the utility of different TAR vectors, radial and unique vectors, by cloning the same single-copy gene. The efficiency of TAR cloning of the hHPRT gene was same using hooks varying from 750 to 63 bp. The number of transformants decreased approximately 20-fold when the TAR vector contained two unique hooks versus using a radial vector, but the percentage of positive recombinants increased over 2-fold when a unique TAR vector was used. Therefore, we suggest that the two-unique TAR vector is suitable for general TAR cloning given its high selectivity, and the radial TAR vector is more suitable when genomic DNA is in limited quantity, for example, DNA isolated from pathological specimens. Moreover, we confirm the minimal length of a unique sequence in a TAR vector is approximately 60 bp for a single-copy gene isolation.

Construction of a Corynebacteriurn glutarnicum-Escherichicr coli Shuttle Vector and Cloning the Homoserine ehydrogenase Gene from C. glutamicum (Corynebacterium glutamicum-Escherichia coli Shuttle Vector 개발과 C.glutamicum 의 Homoserine Dehydrogenase Gene Cloning)

  • 최신건;박종현;신현경
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.1
    • /
    • pp.31-36
    • /
    • 1991
  • A 7.5 kilobases hybrid plasmid, designated as pCE1301, was constructed by combining Eschurichia cwli plasmid pBELl which carries the kanamycin resistance gene of Tn5 with a cryptic plasmid, pSRl of Corynebacterium glutamicum. pCE1301 was transformed C. glutaicum by PEG-mediated protoplast method and its transformation efficiency was about $3.0\times 10^3$ transformants per $\mu g$ of the hybrid plasmid DNA. The physical map reveals that pCE1301 has single restriction sites for SalI and EcoRl, respectively. 'The kanamycin resistance of pCE1301 was stably maintained in C. glutamicum up to 25 generations and any segregation was not detected. pCI31301 was also introduced into Brevibacterium flavum and E coil, and replicated in those strains. pCE1301 was proved to be useiul in cloning the homoscrine dehydrogenase gene from C. glutamicum.

  • PDF

Advancement and Application of Somatic Cell Nuclear Transfer Technique in Dog

  • Oh, H.J.;Hong, S.G.;Park, J.E.;Kim, M.J.;Gomez, M.N.;Kim, M.K.;Kang, J.T.;Kim, J.E.;Jang, G.;Lee, B.C.
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2009.02a
    • /
    • pp.49-57
    • /
    • 2009
  • The cloning of canids was succeeded in 2005, several years after the birth of Dolly the sheep and also after the cloning of numerous other laboratory and farm animal species. The delay of successful somatic cell nuclear transfer (SCNT)was due to the unique reproductive characteristics of the female dogin comparison to other domestic mammals, such as ovulation of immature canine oocyte and a requirement of 25 days for the completion of meiosis within the oviduct (Holst & Phemister, 1971). When the technology for the recovery of in vivo matured oocyte was established, the application of cloning also became possible and cloned dog offspring were obtained. This report summarizes the progress of technical procedures that are required for cloning canids and the application of this technique. The first cloned dog, Snuppy, was achieved using an in vivo-matured oocyte which was enucleated and transferred with an adult skin cell of male Afghan hound. After establishment of a criterion of well-matured oocyte for the improvement of SCNT efficiency, we obtained three cloned female Afghan hound and a toy poodle cloned from 14 year-old aged Poodle using SCNT through this factor. To date, cloned dogs appeared to be normal and those that have reached puberty have been confirmed to be fertile. Through application of canine SCNT technique, first, we demonstrated that SNCT is useful for conserving the breed of endangered animal from extinction through cloning of endangered gray wolves using inter-species SCNT and keeping the pure pedigree through the cloning of Sapsaree, a Korean natural monument. Secondly, we showed possibility of human disease model cloned dog and transgenic cloned dog production through cloning of red fluorescent protein expressing dog. Finally, SCNT can be used for the propagation of valuable genotypes for making elite seed stock and pet dog. In summary, dog cloning is a reproducible technique that offers the opportunity to preserve valuable genetics and a potential step towards the production of gene targeted transgenic cloned dogs for the study of human diseases.

  • PDF

Selection of Early Cleaved Embryos and Optimal Recipients to Improve Efficiency of Pig Cloning

  • Koo, Ok-Jae;Lee, Dong-Won;Kang, Jung-Taek;Kwon, Dae-Kee;Park, Hee-Jung;Park, Sol-Ji;Kim, Su-Jin;Jang, Goo;Lee, Byeong-Chun
    • Journal of Embryo Transfer
    • /
    • v.25 no.4
    • /
    • pp.221-227
    • /
    • 2010
  • Early cleavage is a reliable prognostic tool for successful embryo transfer in assisted reproduction because early cleaved embryo show better pregnancy rate after transfer. There for, preparation of good embryo recipient is important factor to optimize efficiency of pig cloning. The present study was performed to evaluate the effect of early cleavage on the in vivo development of cloned embryos and to analyze breed, parity and estrous synchrony to optimize recipient for pig cloning. In vitro matured porcine oocytes derived from local slaughterhouse and fibroblasts derived from miniature pig fetuses were used for somatic cell nuclear transfer (SCNT). Reconstructed embryos were transferred to recipient pigs on the same day of SCNT or after 1~2 days of in vitro culture for selecting early cleaved embryos. Breed, parity and date of standing estrous of recipients were recorded for analysis. After 25~35 days after embryo transfer pregnancy was diagnosed using ultrasonography, and pregnant recipients were monitored till delivery. Between purebred and crossbred, no significant difference was founded in both pregnancy and delivery rates. However, early cleaved embryos showed significantly higher pregnancy (46.2%) and delivery (12.8%) rates compared to non-selectively transferred group (24.8% and 4.5%, respectively). The results also showed that the recipients showing standing estrous on the same day of SCNT and less than 4 parities were most suitable for pig cloning.

Porcine somatic cell nuclear transfer using telomerase reverse transcriptase-transfected mesenchymal stem cells reduces apoptosis induced by replicative senescence

  • Jeon, Ryounghoon;Rho, Gyu-Jin
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.35 no.3
    • /
    • pp.215-222
    • /
    • 2020
  • Mesenchymal stem cells (MSCs) have been widely used as donor cells for somatic cell nuclear transfer (SCNT) to increase the efficiency of embryo cloning. Since replicative senescence reduces the efficiency of embryo cloning in MSCs during in vitro expansion, transfection of telomerase reverse transcriptase (TERT) into MSCs has been used to suppress the replicative senescence. Here, TERT-transfected MSCs in comparison with early passage MSCs (eMSCs) and sham-transfected MSCs (sMSCs) were used to evaluate the effects of embryo cloning with SCNT in a porcine model. Cloned embryos from tMSC, eMSC, and sMSC groups were indistinguishable in their fusion rate, cleavage rate, total cell number, and gene expression levels of OCT4, SOX2 and NANOG during the blastocyst stage. The blastocyst formation rates of tMSC and sMSC groups were comparable but significantly lower than that of the eMSC group (p < 0.05). In contrast, tMSC and eMSC groups demonstrated significantly reduced apoptotic incidence (p < 0.05), and decreased BAX but increased BCL2 expression in the blastocyst stage compared to the sMSC group (p < 0.05). Therefore, MSCs transfected with telomerase reverse transcriptase do not affect the overall development of the cloned embryos in porcine SCNT, but enables to maintain embryo quality, similar to apoptotic events in SCNT embryos typically achieved by an early passage MSC. This finding offers a bioengineering strategy in improving the porcine cloned embryo quality.

Cloning and Expression of the Extracellular $\beta$-lactamase gene from streptomyces sp. SMF13 in streptomyces lividans

  • Rak, Choi-Sang;Lee, Kye-Joon
    • Korean Journal of Microbiology
    • /
    • v.30 no.3
    • /
    • pp.149-153
    • /
    • 1992
  • Cloning of the gene encoding extracellular .betha.-lactamase from Streptomyces sp. SMF13 in a plasmid pIJ702 and expression of the gene in Streptomyces invidans were carried out. Optimal conditions for the formation of protoplasts of S.lividans and the regeneration of the protoplasts were evaluated. Streptomyces sp. SMF-13 was selected as a donor strain of .betha.-lactamase gene and totla DNA of the strain was partially digested with Sau3A I. DNA fragments ranged from 4kb to 10 kb were ligated to pIJ702 AT Bgl II site and then the ligated DNAs were transformed to the protoplasts of S, livivans. The transformation efficiency was $2 *10^{3}$ .$\mu$g DNA for the ligated DNA mixture. One colony among a thousand colonies regenerated showed extracellular .betha.-lactamase and the size of the inserted DNA fragment was estimated to be 3.94 kb. The .betha.-lactamase activity in the culture broth of the recombinant strain was maximum at 3 days culture to be 1.0 unit/ml.

  • PDF

A Simple and Efficient Subtractive Cloning Method

  • Min, Hyun-Jin;Park, Sang-Soo;Cho, Tae-Ju
    • BMB Reports
    • /
    • v.34 no.1
    • /
    • pp.59-65
    • /
    • 2001
  • In subtractive hybridization, target sequences in the tester are enriched by hybridizing with an excess amount of driver, followed by removing the tester hybridized with the driver. All of existing subtractive cloning methods are designed to remove the tester/driver hybrid. The removal of hybrid, however, is often unsatisfactory For various reasons. In this study we developed a subtractive enrichment protocol in which the tester/driver can be completely removed by selecting only the tester/tester after hybridization. In this protocol both the tester and driver DNAs are ligated with same linker DNAs and amplified by polymerase chain reaction (PCR). The tester DNA is then digested with two different enzymes and used in subsequent hybridization with an excess driver. After hybridization, the DNA is ligated with the adaptor that is only compatible with the tester/tester. Since only the tester/tester can have the new adaptor, no tester/driver can be amplified by PCR in this protocol. Unlike other methods, a 100% subtraction efficiency can be achieved even though the enzymatic treatments used in the enrichment procedure are incomplete. Furthermore, only the hybridized tester DNA can have the new adaptor and be amplified by PCR, resulting in 100% denaturation in effect. The efficacy of this novel method was verified with the model system in which a known amount of the target sequence is included.

  • PDF

Cloning and Characterization of the Putative Transferrin Receptor cDNA from the Olive Flounder (Paralichthys olivaceus)

  • Won Kyoung-Mi;Park Soo-Il
    • Fisheries and Aquatic Sciences
    • /
    • v.6 no.2
    • /
    • pp.101-104
    • /
    • 2003
  • A cDNA clone for the olive flounder (Paralichthys olivaceus) transferrin receptor (fTfR) was isolated from a leukocytes cDNA library. The fTfR gene consisted of 2,319 bp encoding 773 amino acid residues. The amino acid sequence alignment of the fTfR showed that their size and hydrophobic profile are similar. In addition, the Tyr-Thr-Arg-Phe (YTRF) motif that is the recognition signal for high-efficiency endocytosis, is conserved very well. This motif is important for functional properties of TfR. The deduced amino acid sequence had $42.4-42.9\%$ identities with the previously reported TfRs of vertebrates. The fTfR was expressed in the blood, kidney, spleen, and liver of healthy olive flounder by the Northern blot hybridization.

Yeast Cloning Vectors and their Application to the Development of Starch-fermenting Yeast (효모 Cloning Vector와 전분발효 효모의 개발)

  • Kim, Keun
    • Applied Biological Chemistry
    • /
    • v.31 no.3
    • /
    • pp.267-273
    • /
    • 1988
  • Transformed, hybrid strains of the yeast Saccharomyces capable of simultaneous secretion of both glucoamylase and ${\alpha}-amylase$ have been produced. These strains can carry out direct, one-step assimilation of starch with conversion efficiency greater than 93% during a 5 day growth period. One of the transformants converts 92.8% of available starch into reducing sugars in only 2 days. Glucoamylase secretion by these strains results from expression of one or more chromosomal STA genes derived from Saccharomyces diastaticus. The strains were transformed by a plasmid(pMS12) containing mouse salivary ${\alpha}-amylase$ cDNA in an expression vector containing yeast alcohol dehydrogenase promoter and a segment of yeast $2{\mu}$ plasmid. The major starch hydrolysis product produced by crude amylases found in culture broths is glucose, indicating that ${\alpha}-amylase$ and glucoamylase act cooperatively.

  • PDF