• 제목/요약/키워드: Cloning

검색결과 2,574건 처리시간 0.039초

고등식물 형질전환용 유전자 운반체 pKCHI의 개발 (Development of a Plant Transformation Vector, pKCHI)

  • 정상호
    • Journal of Plant Biology
    • /
    • 제32권1호
    • /
    • pp.23-32
    • /
    • 1989
  • We have developed a plasmid vector, pKCH1, for the purpose of higher plant transformation. It contains the promoter region of cauliflower mosaic virus 35S transcript (P35s) and the terminator region of nopaline synthase gene (Tnos) with unique cloning sites, Bam HI and Xba I, between them. After inserting a foreing gene at the cloning sites, P35s-foreign gene-Tnos cassette can be recovered by using a restriction enzyme Hind III.

  • PDF

Transgenic Animal Model in Reproductive Medicine

  • 한용만;이경광
    • 대한생식의학회:학술대회논문집
    • /
    • 대한불임학회 제1차 연수강좌
    • /
    • pp.229-234
    • /
    • 2000
  • Transgenic animal technology has provided new opportunities in many aspects of biotechnology and medicine during two decades. Several gene delivery systems including pronuclear injection, retroviral vectors, sperm vectors, and somatic cell cloning have been tried to generate new functional animals. In the future somatic cell cloning technology will be a major method in the transgenic animal production. Many factors enhancing overall transgenic efficiency should be overcome to facilitate the industrial applications of transgenic technology. Transgenic animal technology has settled down in some areas of the medicine, especially the mass production of pharmaceutical proteins and xenotransplantation. Thus, animal biotechnology will contribute to welfare of human being.

  • PDF

Molecular Cloning and Expression of Human Dihydrolipoamide Dehydrogenase-Binding Protein in Excherichia coli

  • Lee, Jeong-Min;Ryou, Chong-Suk;Kwon, Moo-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • 제11권4호
    • /
    • pp.592-597
    • /
    • 2001
  • The pyruvate dehydrogenase complex (PDC) catalyzes the oxidative decarboxylation of pyruvate with the formation of $CO_2$, acetyl-CoA, NADH, and H+. This complex contains multiple copies of three catalytic components including pyruvate dehydrogenase(E1), dihydrolipoamide acetyltransferase(E2), and dihydrolipoamide dehydrogenase (E3). Two regulatory components (E1-kinase and phospho-E1 phosphatase) and functionally less-understood protein (protein X, E3BP) are also involved in the formation of the complex. In this study, cloning and characterization of a gene for human E3BP have been carried out. A cDNA encoding the human E3BP was isolated by database search and cDNA library screening. The primary structure of E3BP has some similar characteristics with that of E2 in the lipoyl domain and the carboxyl-terminal domain, based on the nucleotide sequence and the deduced amino acid sequence. However, the conserved amino acid moiety including the histidine residue for acetyltransferase activity in E2 is not conserved in the case of human E3BP. The human E3BP was expressed and purified in E. coli. The molecular weight of the protein, excluding the mitochondrial target sequence, was about 50 kDa as determined by SDS-PAGE. Cloning of human E3BP and expression of the recombinant E3BP will facilitate the understanding of the role(s) of E3BP in mammalian PDC.

  • PDF

YRp 7 vector를 이용한 Bacillus amyloliquefaciens amylase gene의 cloning I. Escherichia coli에서의 발현 (Cloning of Bacillus amyloliquefaciens amylase gene using YRp7 as a vector I. Expression of cloned amylase gene in Escherichia coli)

  • 서정훈;김영호;전도연;홍순덕;조윤래
    • 한국미생물·생명공학회지
    • /
    • 제14권2호
    • /
    • pp.161-168
    • /
    • 1986
  • E. coli-S. cerevisiae shuttle vector인 plasmid YRp7을 이용하여 B. amyloliquefaciens의 $\alpha$-amylase gene을 E. coli 내에 cloning하였다. 이때 제한 효소 Sau 3 AI에 의해 얻어진 $\alpha$-amylase gene의 크기는 약 1.95kb정도였으며 E. coli내에서 비교적 안정하게 유지되고 발현되었다. 재조합 plasmid p-EA24를 함유한 E. coli는 B. amyloliquefaciens의 약 65% 정도의 $\alpha$-amylase를 생성하였으며, 최적온도, pH, CaCl$_2$의 영향등 $\alpha$-amylase의 효소학적인 성질을 비교 조사해 본 결과 B. amyloliquefaciens의 $\alpha$-amylase와 동일하였다. 또한 E. coli에서 생성된 $\alpha$-amylase로 70% 정도가 periplasmic space에 존재하였으며 나머지는 세포 내부에 존재함을 알았다.

  • PDF

Cloning and Expression of a Novel Chitosanase Gene (choK) from $\beta$-Proteobacterium KNU3 by Double Inverse PCR

  • Yi, Jae-Hyoung;Lee, Keun-Eok;Choi, Shin-Geon
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권3호
    • /
    • pp.563-569
    • /
    • 2004
  • The DNA sequence of the chitosanase gene (choK) from $\beta$-Proteobacterium KNU3 showed an 1,158-bp open reading frame that encodes a protein of 386 amino acids with a novel 74 signal peptide. The degenerated primers based on the partial deduced amino acid sequences from MALDI- TOF MS analyses yielded the 820 bp of the PCR product. Based on this information, double inverse PCR cloning experiments, which use the two specific sets of PCR primers rather than single set primers, identified the unknown 1.2 kb of the choK gene. Subsequently, a 1.8 kb of full choK gene was cloned from another PCR cloning experiment and it was then subcloned into pGEM T-easy and pUC18 vectors. The recombinant E. coli clone harboring recombinant pUC18 vector produced a clear halo around the colony in the glycol chitosan plates. The recombinant ChoK protein was secreted into medium in a mature form while the intracellular ChoK was produced without signal peptide cleavage. The activity staining of PAGE showed that the recombinant ChoK protein was identical to the chitosanase of wild-type. The comparison of deduced amino acid sequences of choK revealed that there is 92% identity with that of Sphingobacterium multivorum chitosanase. Judging from the conserved module in other bacterial chitosanases, chitosanase of KNU3 strain (ChoK) belongs to the family 80 of glycoside hydrolases.

챠넬메기의 metallothionein cDNA 유전자의 cloning 및 그 특성에 관한 연구 (Molecular cloning and characterization of metallothionein cDNA gene in channel catfish)

  • 이인정;송영환
    • 한국어병학회지
    • /
    • 제5권2호
    • /
    • pp.143-152
    • /
    • 1992
  • Metallothionein은 세포내의 중금속의 농도을 조절하는 주요한 단백질로서 bacteria에서 척추동물에 이르기까지 모든 생명체에서 나타나는 공통된 단백질이다. 비록 metallothionein의 정확한 기능은 알려져 있지 않으나 독성을 나타내는 중금속에 대하여 세포내 방어기작에 관여할 뿐만 아니라 여러다른 유전자의 총괄적 조절기작 및 matalloprotein의 발현에 관여할 것으로 보고있다. 본 연구에서는 Channel Catfish의 metallothionein cDNA 유전자를 poly(A)를 갖는 mRNA로 부터 Reverse Transcriptase-Polymerase Chain Reaction(RT-PCR)에 의하여 cloning하였다. 증폭된 PCR products는 pBluescript SK+의 EcoRV site 및 pUC19의 Smal site에 dT tailing을 하여 cloning하였으며, PCR products는 multicloning site에 있는 EcoRI 및 HindIII 로 절단하여 확인하거나 신속한 PCR screening에 의하여 확인하였다. 여러 PCR clone 중 하나인 pMT150에 대한 DNA 염기서열을 조사한 결과 다른 어류의 metallothionein cDNA 유전자와 높은 유사성을 보였다.

  • PDF