• Title/Summary/Keyword: Cloned calves

Search Result 15, Processing Time 0.017 seconds

Establishment of bovine Fetal Fibroblasts Line for Production of Cloned Calves in Korean Native Cattle: The Effects of Culture Period and Various Cell Size on the Efficiency of Nuclear Transfer (복제 한우 생산을 위한 Bovine Fetal Fibroblasts의 이용에 관한 연구: 공여핵원의 배양기간 및 세포 크기가 핵이식의 효율에 미치는 영향)

  • 황우석;박종임;조종기;김기연;신수정;용환율;이병천
    • Journal of Embryo Transfer
    • /
    • v.14 no.2
    • /
    • pp.93-97
    • /
    • 1999
  • The development potential of bovine somatic cells was evaluated using nuclear transfer. A single donor cell derived from fetus of HanWoo(Korean Native Cattle) was selected and deposited into perivitelline space of each enucleated oocyte before electrical fusion and activation. Nuclei of donor cells starved for 7 days (37%) tended to support the development of reconstitute embryo the blastocyst stage better than those of donor cells starved 3, 14 and 30 days. The cleavage rate was significantly lower(P<0.05) in reconstitute embryos derived from large size donor cells(51.2%), than those from small medium size donor cells(76.6 and 73.5, respectively). The developmental rate to blastocyst of reconstructed embryos from medium size donor cells was higher than those from small and medium size donor cells. This study demonstrates that an appropriate culture period for induction into quiescent stage and the size of donor cells effect on the efficiency of nuclear transfer using cultured bovine cells.

  • PDF

In Vitro Development of Nuclear Transplantation Bovine Embryos Using In Vitro Fertilized Embryos of Korean Native Heifers (한우 체외수정란을 이용한 핵 이식배의 체외발달에 관한 연구)

  • 박충생;공일근;노규진;이효종;최상용
    • Korean Journal of Animal Reproduction
    • /
    • v.18 no.2
    • /
    • pp.113-119
    • /
    • 1994
  • To improve nuclear transplantation(NT) efficiency and to produce a large scale genetically identical cloned calves, examined the in vitro development capacity after co-culture of bovine oviductal epithelial cells (BOEC) and granulosa cells in TCM-199 supplemented with 10% fetal calf serum (FCS) with early bovine embryos derived from in vitro matured fertilized(IVM-IVF) oocyte. In addition, the age dependence of IVM oocyte on electro-stimulation and the effective electric voltage on in ivtro development of bovine NT embryos were examined. The results obtained were summerized as follows; 1. The cleavage rates of IVM-IVF bovine embryos in co-culture with bovine oviductal epithelial cells and granulosa cells were not significantly different(P<0.05), but the developmental rate into morula and blastocyst stage were different showing 38.3 and 20.2%, respectively. 2. The activation (82.5%) and development in vitro(8.6%) into later embryo stages of the aging oocytes of 32 hours post-maturation (hpm) were significantly higher than those of 24 hpm at direct current (DC) voltage of 1.5kV/cm, 60$\mu$sec pulse duration and 1 pulse time. 3. The fusion rates of NT eggs of 32 hpm following to different DC voltages from range 0.75 to 1.5kV/cm were not differ, but the developmental rate into morula and blastocyst stages at DC voltages of 0.75 and 1.0kV/cm were higher(11.4 and 12.6%, respectively) than those of 1.5kV/cm(0%). From these results, it can be suggested the optimal culture system for in vitro culture of IVM-IVF bovine embryos is a co-culture system with BOEC in TCM-199 supplemented 10% FCS. The effective time and the DC voltage for activation, electrofusion and in vitro development of NT embryos derived from IVM-IVF bovine embryo are 32hpm and 0.75~1.0kV/cm. But to improve NT efficiency, the advanced research (cell cycle synchronization, micromanipulation, culture system, etc.) is needed.

  • PDF

Studies on the Cloning of Calves by Nuclear Transplantation I. Effects of Cell Cycle, Fusion Media and Oxygen Concentration on the Developmental Competence (핵이식을 이용한 복제송아지 생산에 관한 연구 I. 세포주기, 융합배지 및 산소분압이 체외발육능에 미치는 영향)

  • 황우석;신태영;노상호;이병천
    • Journal of Embryo Transfer
    • /
    • v.12 no.2
    • /
    • pp.171-179
    • /
    • 1997
  • The objectives of the present study were improvements in the efficiency of developmental rates to morula and blastocyst stages to produce a large number of genetically identical nuclear transplant embryos. The oocytes collected from slaughterhouse ovaries were matured for 24 h and then enucleated and cultured to allow cytoplasmic maturation and gain activation competence. And then the donor embryos were treated for 12 h with 10 $\pi$g /ml nocodazole and 7.5 $\pi$g /ml cytochalasin B to synchronize the cell cycle stage at 26 h after the onset of culture. The blastomeres were transferred into the perivitelline space of the enucleated nocytes and blastomeres and oocytes were fused by electrofusion. The cloned embryos were then cultured in various conditions to allow further development. The age of the recipient(30 vs 40 h) had no significant effect on the fusion rates(82.4 vs 82.1%) and the developmental rates to morula /blastocyst(9.8 vs 11.0%). Effect of Nocodazole treatment on the donor cell cyle synchronization to improve the developmental rates of bovine nuclear transplant embryos was significantly higher than control group(21.4 vs 10.1%, p<0.05). Significant differences were in the percentage of fusion rates(72.9,77.1vs 61.9%) in three types of fusion medium(PBS(+), mannitol and sucrose, p<0.01). The developmental rates of bovine nuclear transplant embryos appeared to be highest in mSOF medium under 5% 0$_2$ condition, but no significant differences were found when compared with TCM199-BOEC and mSOF under two different oxygen ratio(5 and 20%).

  • PDF

Studies on the cloning of calves by nuclear transplantation II. Efficient embryo cloning under oocyte activation, cell cycle regulation of donor nuclei and optimal culture conditions (핵이식을 이용한 복제송아지 생산에 관한 연구 II. 효율적인 복제수정란 생산을 위한 난자의 활성화, 공여핵의 세포주기조절 및 적정 배양조건)

  • Hwang, Woo-suk;Roh, Sang-ho;Lee, Byeong-chun
    • Korean Journal of Veterinary Research
    • /
    • v.37 no.3
    • /
    • pp.639-645
    • /
    • 1997
  • The objectives of the present study were improvements in the efficiency of developmental rates to morula and blastocyst stages to produce a large number of genetically identical nuclear transplanted embryos. The oocytes collected from slaughterhouse ovaries were matured 24h in TCM199+10% FBS and exposed to $39^{\circ}C$ or room temperature to allow cytoplasmic maturation and gain activation competence. Donor embryos were treated for 12h with $10{\mu}g/ml$ nocodazole or $0.05{\mu}g/ml$ demicolcine to synchronize the cell cycle stage at 26h after the onset of culture. The blastomeres and recipient oocytes were fused by electrofusion. The cloned embryos were then cultured in various conditions to allow further development. In the treatment of oocyte activation and cell cycle regulation of donor nuclei, the room temperature exposure and nocodazole treatment group had significant effect on the developmental rates to morula/blastocyst(21.7% vs 12.1~16.7%), but had no significant effect on the fusion rates between donor blastomeres and recipient oocytes. The developmental rates of bovine nuclear transplanted embryos appeared to be higher significantly in mTALP medium under 5% $O_2$ condition and in TCM199 with bovine oviduct epithelial cell under 20% $O_2$ condition(22.2%) than other groups. In embryo transfer of nuclear transplanted embryos, there were no significant differences in calving rates between the use of excellent and good grade donor embryos.

  • PDF

Development of Transgenic NT Embryos Using Bovine Fetal Fibroblasts Transfected with hFSH Gene (hFSH 유전자가 도입된 소 태아섬유아세포를 이용한 형질 전환 복제 수정란의 발달)

  • Yang B.C.;Im G.S.;Kim D.H.;Min K.S.;Yoon D.H.;Park H.S.;Kim S.W.;Hwang I.S.;Seo J.S.;Seong H.H.;Yang B.S.
    • Journal of Embryo Transfer
    • /
    • v.21 no.1
    • /
    • pp.13-20
    • /
    • 2006
  • The purpose of this study was to develope the transgenic cattle expressing hFSH into the urine using the nuclear transfer. To produce the interest gene in urine, the specific vector was ligated with hFSH gene undo. maUII promoter. The fetal fibroblast cells (KbFF) were isolated from a 45-day male fetus. The hFSH gene was co-transfected with pcDNA3 (neo) vector to KbFF cells by electroporation. The gene-transfected cells were cultured with G-418 selection medium for 2 weeks. Selected colonies were confirmed by PCR. For nuclear transfer, enucleated bovine oocytes were transferred with hFSH transfected or nontransfected fetal fibroblasts. The cleavage and blastocyst formation rates were significantly lower (p<0.05) in cloned embryos transfected with hFSH gene (68.7% and 15.7%) than in those non-transfected (67.6% and 24.5 %), respectively. Apoptosis analysis showed no difference between hFSH transfected and non-transfected blastocysts (p>0.05). The blastocysts were transfected to 77 (control 24, hFSH 53) recipient cows. Two calves were born (1.9%) following transfer with NT embryos transfected with hFSH gene, but they were confirmed not to be transgenic calves. This result shows that the hFSH colonies were mixed with transfected and non transfected cells. Further research will be needed for selection and establishment of gene transfected cells.