• Title/Summary/Keyword: Cloned Embryos

Search Result 179, Processing Time 0.024 seconds

High Postnatal Survival and Efficacy of Female-Derived Donor Cells in the Productive of Somatic Cloned Piglets

  • Cho, Seong-Keun;Park, Mi-Ryung;Hwang, Kyu-Chan;Kwon, Deug-Nam;Im, Yeo-Jeoung;Park, Ju-Joung;Son, Woo-Jin;Kim, Jin-Hoi
    • Proceedings of the KSAR Conference
    • /
    • 2003.06a
    • /
    • pp.33-33
    • /
    • 2003
  • This study was conduct to compare the efficacy to produce male and female somatic cloned piglets. Maturation of porcine COCs was accomplished by incubation in NCSU-23 medium supplemented with 0.6 mM cysteine, 10% porcine follicular fluid, 1mM dibutyryl cyclic adenosine monophosphate (dbc-AMP, Sigma, USA), and 0.1 IU/ml human menopausal gonadotrophin (hMG, Teikokuzoki, Japan) for 20h and then cultured without dbcAMP and hMG for another 18 to 24 h. Female and male fetal cells were isolated from each fetus, cultured in ES-DMEM medium containing 10% FCS. Enucleated oocytes were fused with fetal fibroblasts (passage 4 to 15). Reconstructed embryos were cultured in NCSU-23 with 4 mg/ml BSA under mineral oil at 39$^{\circ}C$ in 5% $CO_2$ in air. A total of 12,328 nuclear-transferred embryos (1- to 4-cell stage) were surgically transferred into 69 surrogate gilts. Three recipients aborted during the period of conception. Three gilts delivered eleven female piglets, and five recipients gave rise to birth 22 male piglets. The average birth weigh of the cloned piglets was 1.52 kg (1.38~1.83 kg) in female piglets and 0.84 kg (0.45~1.25 kg) in male piglets. Alive cloned pigs was seven in female piglets (63.6%) and four in male piglets (18.2%). The other two recipients is ongoing. This study suggests that female-derived fetal cell as a nuclear donor has more capability on production of cloned piglets than male.

  • PDF

Cats Cloned from Fetal Fibroblast Cells by Nuclear Transfer

  • Yin, X.J.;Lee, H.S.;Lee, Y.H.;Hwang, W.S.;Kong, I.K.
    • Proceedings of the Korean Society of Embryo Transfer Conference
    • /
    • 2004.10a
    • /
    • pp.26-31
    • /
    • 2004
  • This work was undertaken in order to study the developmental competence of nuclear transfer cat embryo with fetal fibroblast and adult skin fibroblast as donor nuclei. Oocytes wererecovered by mincing the ovaries in Hepes-buffered TCM199 and selected the cumulus oocyte complexes (COCs) with compact cumulus cell mass and dark. Homogenous ooplasm were cultured for maturation in TCM199 + 10% fetal bovine serum (FBS) for 12 hours and used as a source of recipient cytoplast for exogenous somatic nuclei. In Experiment 1, we evaluated the effect donor cell types on the reconstruction and development of cloned embryos. Fusion, first cleavage and blastocyst developmental rate was not different between fetal fibroblast and adult skin cell (71.2 vs. 66.8; 71.0 vs. 57.6; 4.0 vs. 6.1 %, P<0.05). In Experiment 2, cloned embryos were surgically transferred into the oviducts of recipient queens. One of seven recipient queens was delivered naturally 2healthy cloned cats and 1 stillborn from fetal fibroblast cell of male origin after 65 days embryo transfer. One of three recipient queens was delivered naturally 1 healthy cloned cat from adult skin cell of female after 65 days embryo transfer. The cloned cats showed genotypes identical to the donor cell lines, indicating that adult somatic cells can be used for feline cloning.

  • PDF

Sex Determination in Somatic and Embryonic Cells of the Pig by FISH and PCR (FISH와 PCR에 의한 돼지 체세포 및 배아세포의 성 판정)

  • Chung, Y.;Jeon, J.T.;Kim, K.D.;Lee, S.H.;Hong, K.C.
    • Korean Journal of Animal Reproduction
    • /
    • v.20 no.3
    • /
    • pp.323-331
    • /
    • 1996
  • Predetermination of sex in mammalian species has many aspects of application including the prenatal diagnoses of genetic disorders in humans and sex-selected breeding programs in the animal industry. Embryos sexing can be carried out using the polymerase chain reaction (PCR) to amplify specific sequences present in the sex chromosomes, or by fluorescent in situ hybridization (FISH) of specific probes to the X and Y chromosomes. A 3.3 kb porcine male-specific DNA fragment (pEM39) was cloned previously in our laboratory. In this study, FISH and PCR methods were employed to examine if the pEM39 can be used a sex-specific DNA probes Porcine ovaries were obtained from a local slaughter house and oocytes collected. All oocytes were subjected to in vitro maturation followed by 1n vitro fertilization. Parthenogenetically activated embryos were served as a negative control. Embryonic samples were collected at the 2-cell stages and PCR was performed to analyze DNA. Among 10 embryos examined, four embryos were identified as males and six were females. The cloned male-specific DNA fragment showed male-specificity for the cells in the liver tissue and the porcine early embryos by FISH. It was also demonstrated that the cloned male-specific DNA is localized on the hetero chromatic region of the long arm in the Y chrom-osome (Yq) as shown by the FISH and karyotyping. The results suggest that the cloned male-specific DNA fragment may be useful for predetermination of sex with a few embryonic cells. The porcine male-specific sequence can be a reliable index for embryo sexing by PCR.

  • PDF

The Effect of Oocyte Activation on Development of Porcine Cloned Embryos

  • Kim, Y.S.;Lee, S. L.;Park, G. J.;S. Y. Choe
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.124-124
    • /
    • 2003
  • The successful development of embryos cloned by nuclear transfer (NT)have been dependent on a wide range of known factors including cell cycle of donor and recipient ooplast, oocyte quality, NT procedure and oocyte activation. The present study compared the development of cloned porcine embryos following different activation treatments. Cumulus-oocyte complexes (COCs) were aspirated from 26 mm follicles of slaughterhouse ovaries and cultured for 22 h in NCSU #23 medium supplemented with 10% porcine follicular fluid, 0.57 mM cysteine, 0.5 g/mL LH, 0.5 g/mL FSH and 10 ng/mL EGF. The COCs were further cultured for an additional 22 h in the same medium at $39{\cird}C$ in an atmosphere of 5% $CO_2$ in air, without hormonal supplements. Primary cultures of fibroblasts isolated from a female fetus on day 40 of gestation were established in DMEM + 15% FCS. For nuclear donation, cells at the 5th-6th passage were cultured in DMEM +0.5% FCS for 5 days in order to arrest the cells in G0/Gl. After enucleation, oocytes were reconstructed by transfer of donor cells and fusion with three DC pulses (1.4 KV/cm, 30 sec) in 0.28 M mannitol containing 0.01 mM $CaCl_2$ and 0.01 mM $MgCl_2$. Eggs were then divided into three treatment groups, control (without further treatment, Group 1), eggs cultured in 10 g/ml cycloheximide (CHX) for 5 h (Group 2), and eggs cultured in 1.9 mM 6-dimethylaminopurine (6-DMAP) for 5 h (Group 3). The eggs were then cultured in sets of 30 in 60 I drops of NCSU#23 supplemented with 4mg/ml BSA (essentially fatty acid free) until day 7 at $39{\circ}C$ in a humidified atmosphere of 5% $CO_2$. On day 4 the culture were fed by adding 20 I NCSU #23 supplemented with 10% FBS. Development rates into blastocysts were significantly higher (P<0.05) in Group 3 embryos compared to Group 1 controls ($27.6 \mu 2.7% vs. 20.1 \mu 4.1%$, respectively), but rates did not differ in Group 2 compared to control ($23.8 \mu 5.7%$). Total cell number in Group 3 blastocysts was however significantly higher (P<0.05) than in Groups 1 and 2 ($44.6 \mu 2.4 vs. 19.9 \mu 1.9 and 21.9 \mu 2.1$, respectively). These results suggest that 6-DMAP is more efficient than cycloheximide in the activation of electrically fused NT oocytes during in vitro production of cloned porcine embryos.

  • PDF

Evaluation of porcine urine-derived cells as nuclei donor for somatic cell nuclear transfer

  • Zhang, Yu-Ting;Yao, Wang;Chai, Meng-Jia;Liu, Wen-Jing;Liu, Yan;Liu, Zhong-Hua;Weng, Xiao-Gang
    • Journal of Veterinary Science
    • /
    • v.23 no.2
    • /
    • pp.40.1-40.13
    • /
    • 2022
  • Background: Somatic cell nuclear transfer (SCNT) is used widely in cloning, stem cell research, and regenerative medicine. The type of donor cells is a key factor affecting the SCNT efficiency. Objectives: This study examined whether urine-derived somatic cells could be used as donors for SCNT in pigs. Methods: The viability of cells isolated from urine was assessed using trypan blue and propidium iodide staining. The H3K9me3/H3K27me3 level of the cells was analyzed by immunofluorescence. The in vitro developmental ability of SCNT embryos was evaluated by the blastocyst rate and the expression levels of the core pluripotency factor. Blastocyst cell apoptosis was examined using a terminal deoxynucleotidyl transferase dUTP nick end-labeling assay. The in vivo developmental ability of SCNT embryos was evaluated after embryo transfer. Results: Most sow urine-derived cells were viable and could be cultured and propagated easily. On the other hand, most of the somatic cells isolated from the boar urine exhibited poor cellular activity. The in vitro development efficiency between the embryos produced by SCNT using porcine embryonic fibroblasts (PEFs) and urine-derived cells were similar. Moreover, The H3K9me3 in SCNT embryos produced from sow urine-derived cells and PEFs at the four-cell stage showed similar intensity. The levels of Oct4, Nanog, and Sox2 expression in blastocysts were similar in the two groups. Furthermore, there is a similar apoptotic level of cloned embryos produced by the two types of cells. Finally, the full-term development ability of the cloned embryos was evaluated, and the cloned fetuses from the urine-derived cells showed absorption. Conclusions: Sow urine-derived cells could be used to produce SCNT embryos.

The Imprinted Messenger RNA Expression in Cloned Porcine Pre-implantation Embryos

  • Park, Mi-Rung;Kim, Bong-Ki;Lee, Hwi-Cheul;Lee, Poong-Yeon;Hwang, Seong-Soo;Im, Gi-Sun;Woo, Jae-Seok;Cho, Chang-Yeon;Choi, Sun-Ho;Kim, Sang-Woo;Ko, Yeoung-Gyu
    • Journal of Embryo Transfer
    • /
    • v.25 no.2
    • /
    • pp.127-131
    • /
    • 2010
  • The objective of this study was to determine the mRNA expression patterns of several putative imprinted genes in in vivo and in vitro fertilized, parthenogenetic, and cloned porcine preimplantation embryos. Both maternally (Dlk1, IGF2, Peg1/Mest and Ndn) and paternally (IGF2r, H19 and Xist) imprinted genes were selected. We have used reverse transcription polymerase chain reaction (RT-PCR) to investigate gene expression patterns in the porcine embryos. IGF2 transcripts were detected in the most of embryos. In nuclear transfer (NT), Peg1/MEST transcripts showed fluctuating pattern. Dlk1 was only expressed partially from the morula and blastocyst stage of NT embryos. Ndn gene expression was started somewhat early for in vivo embryos. However, the expressions of maternally imprinted genes were similar in all types of blastocysts (NT, in vivo and in vitro fertilized, and parthenogenetic embryos). The IGF2R gene expression level was somewhat irregular and varied among samples. However, for the majority samples of all types of embryos, IGF2R expression was diminished after one- to two-cell stages and reappeared at the morulae or blastocyst stage embryos. H19 gene was only expressed early in parthenogenetic and in vivo embryos. For NT embryos, H19 was only expressed in blastocysts. Xist expression was detected in all blastocysts with the earliest being in vivo 8-cell stage embryos and the last one being NT blastocysts. These putative imprinted genes appeared to have stage specific expression patterns with a fluctuating pattern for some genes (Peg/Mest, IGF2r, H19). These results suggest that stage specific presence of imprinted genes can affect the embryo implantation and fetal development.

Analysis of Placental Proteins in Somatic Cell Clone Recipient Cows

  • Woo, Jei-Hyun;Chung, Hak-Jae;Kim, Bong-Ki;Ko, Yeoung-Gyu;Kim, Jeom-Soon;Jung, Jin-Kwan;Chang, Won-Kyong
    • Proceedings of the KSAR Conference
    • /
    • 2004.06a
    • /
    • pp.197-197
    • /
    • 2004
  • The purpose of this experiment was to investigate the protein profiles in the placenta of Korean native cows(KNC) transferred cloned embryos and KNC artificially inseminated placental tissues were collected from the cows after cesarean section around parturition, and placental proteins were analyzed. Using two dimensional polyacrylamide gel eletrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. (omitted)

  • PDF

Egfp Gene Expression in Nuclear Transfer-Derived Embryos and The Production of Cloned Transgenic Pig from Fetus-Derived Fibroblasts

  • Park, Mi-Rung;Cho, Seong-Keun;Lee, Eun-Kyeong;Joo, Young-Kuk;Park, Young-Ho;Kim, Hyung-Joo;Do, Chang-Hee;Kim, Jin-Hoi
    • Proceedings of the KSAR Conference
    • /
    • 2004.06a
    • /
    • pp.216-216
    • /
    • 2004
  • Genetically modified domestic animals have many potential applications ranging from basic research to production agriculture. One of the goals in transgenic animal production schemes is to reliably predict the expression pattern of the foreign gene. Establishing a method to screen genetically modified embryos for transgene expression before transfer to surrogates may improve the likelihood of producing offspring with the desired expressing pattern. (omitted)

  • PDF

Hypomethylation of DNA in Nuclear Transfer Embryos from Porcine Embryonic Germ Cells

  • Lee, Bo-Hyung;Ahn, Kwang-Sung;Heo, Soon-Young;Shim, Ho-Sup
    • Journal of Embryo Transfer
    • /
    • v.27 no.2
    • /
    • pp.113-119
    • /
    • 2012
  • Epigenetic modification including genome-wide DNA demethylation is essential for normal embryonic development. Insufficient demethylation of somatic cell genome may cause various anomalies and prenatal loss in the development of nuclear transfer embryos. Hence, the source of nuclear donor often affects later development of nuclear transfer (NT) embryos. In this study, appropriateness of porcine embryonic germ (EG) cells as karyoplasts for NT with respect to epigenetic modification was investigated. These cells follow methylation status of primordial germ cells from which they originated, so that they may contain less methylated genome than somatic cells. This may be advantageous to the development of NT embryos commonly known to be highly methylated. The rates of blastocyst development were similar among embryos from EG cell nuclear transfer (EGCNT), somatic cell nuclear transfer (SCNT), and intracytoplasmic sperm injection (ICSI) (16/62, 25.8% vs. 56/274, 20.4% vs. 16/74, 21.6%). Genomic DNA samples from EG cells (n=3), fetal fibroblasts (n=4) and blastocysts from EGCNT (n=8), SCNT (n=14) and ICSI (n=6) were isolated and treated with sodium bisulfite. The satellite region (GenBank Z75640) that involves nine selected CpG sites was amplified by PCR, and the rates of DNA methylation in each site were measured by pyrosequencing technique. The average methylation degrees of CpG sites in EG cells, fetal fibroblasts and blastocysts from EGCNT, SCNT and ICSI were 17.9, 37.7, 4.1, 9.8 and 8.9%, respectively. The genome of porcine EG cells were less methylated than that of somatic cells (p<0.05), and DNA demethylation occurred in embryos from both EGCNT (p<0.05) and SCNT (p<0.01). Interestingly, the degree of DNA methylation in EGCNT embryos was approximately one half of SCNT (p<0.01) and ICSI (p<0.05) embryos, while SCNT and ICSI embryos contained demethylated genome with similar degrees. The present study demonstrates that porcine EG cell nuclear transfer resulted in hypomethylation of DNA in cloned embryos yet leading normal preimplantation development. Further studies are needed to investigate whether such modification affects long-term survival of cloned embryos.