• Title/Summary/Keyword: Clock performance

Search Result 564, Processing Time 0.021 seconds

Low Power Symbol Detector for MIMO Communication Systems (MIMO 통신 시스템을 위한 저전력 심볼 검출기 설계 연구)

  • Hwang, You-Sun;Jang, Soo-Hyun;Jung, Yun-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.2
    • /
    • pp.220-226
    • /
    • 2010
  • In this paper, an low power symbol detector is proposed for MIMO communication system with two transmit and two receive antennas. The proposed symbol detector can support both the spatial multiplexing (SM) mode and spatial diversity (SD) mode for MIMO transmission technique, and shows the optimal maximum likelihood (ML) performance. Also, by sharing the hardware block and using the dedicated clock MIMO modes, the power of the proposed architecture is dramatically decreased. The proposed symbol detector was designed in hardware description language (HDL) and synthesized to logic gates using a $0.13-{\mu}m$ CMOS standard cell library. The power consumption was estimated by using Synopsys Power CompilerTM, which is reduced by maximum 85%, compared with the conventional architecture.

A Design of AES-based CCMP Core for IEEE 802.11i Wireless LAN Security (IEEE 802.11i 무선 랜 보안을 위한 AES 기반 CCMP Core 설계)

  • Hwang Seok-Ki;Lee Jin-Woo;Kim Chay-Hyeun;Song You-Soo;Shin Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.4
    • /
    • pp.798-803
    • /
    • 2005
  • This paper describes a design of AES(Advanced Encryption Standard)-based CCMP core for IEEE 802.1li wireless LAN security. To maximize its performance, two AES cores ate used, one is for counter mode for data confidentiality and the other is for CBC(Cipher Block Chaining) mode for authentication and data integrity. The S-box that requires the largest hardware in AES core is implemented using composite field arithmetic, and the gate count is reduced by about $20\%$ compared with conventional LUT(Lookup Table)-based design. The CCMP core designed in Verilog-HDL has 13,360 gates, and the estimated throughput is about 168 Mbps at 54-MHz clock frequency. The functionality of the CCMP core is verified by Excalibur SoC implementation.

Total Ordering Algorithm over Reliable Multicast Protocol using Token Passing Mechanism (멀티캐스트 프로토콜상에서 토큰 전달 방법을 이용한 전체 순서화 알고리즘)

  • Won, Yu-Jae;Yu, Gwan-Jong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.8
    • /
    • pp.2158-2170
    • /
    • 1999
  • It has been required more reliable communication on processes and improvement of system performance as distributed systems using multicast protocol became widespread. In distributed environment maintaining data consistency through asynchronous execution of processes and coordinating the activities of them would occurs. This paper proposes a total ordering algorithm, TORMP, in order to resolve these problems. TORMP takes advantage of multicast protocol and uses an effective token passing method. It reduces a process delaying time before transmitting its message by multicasting a token simultaneously to every process that initiates the request of the message. Moreover, the processes receiving the token start multicasting the message at the same time, which causes to cut down the overall transmission dely. In case that one process sends a message, TORMP hardly uses the procedure of controlling for ordering. It gives fairly the right of sending messages to all processes in a group with utilizing vector clock. In TORMP, unlike other algorithms, the number of packets generated during ordering process does not depend on the number of processes.

  • PDF

Study of Optimization for High Performance Adders (고성능 가산기의 최적화 연구)

  • 허석원;김문경;이용주;이용석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.5A
    • /
    • pp.554-565
    • /
    • 2004
  • In this paper, we implement single cycle and multi cycle adders. We can compare area and time by using the implemented adders. The size of adders is 64, 128, 256-bits. The architecture of hybrid adders is that the carry-out of small adder groups can be interconnected by utilizing n carry propagate unit. The size of small adder groups is selected in three formats - 4, 8, 16-bits. These adders were implemented with Verilog HDL with top-down methodology, and they were verified by behavioral model. The verified models were synthesized with a Samsung 0,35(um), 3.3(V) CMOS standard cell library while a using Synopsys Design Compiler. All adders were synthesized with group or ungroup. The optimized adder for a Crypto-processor included Smart Card IC is that a 64-bit RCA based on 16-bit CLA. All small adder groups in this optimized adder were synthesized with group. This adder can operate at a clock speed of 198 MHz and has about 961 gates. All adders can execute operations in this won case conditions of 2.7 V, 85 $^{\circ}C$.

Hardware Design and Implementation of Joint Viterbi Detection and Decoding Algorithm for Bluetooth Low Energy Systems (블루투스 저전력 시스템을 위한 저복잡도 결합 비터비 검출 및 복호 알고리즘의 하드웨어 설계 및 구현)

  • Park, Chul-hyun;Jung, Yongchul;Jung, Yunho
    • Journal of IKEEE
    • /
    • v.24 no.3
    • /
    • pp.838-844
    • /
    • 2020
  • In this paper, we propose an efficient Viterbi processor using Joint Viterbi detection and decoding (JVDD) algorithm for a for bluetooth low energy (BLE) system. Since the convolutional coded Gaussian minimum-shift keying (GMSK) signal is specified in the BLE 5.0 standard, two Viterbi processors are needed for detection and decoding. However, the proposed JVDD scheme uses only one Viterbi processor by modifying the branch metric with inter-symbol interference information from GMSK modulation; therefore, the hardware complexity can be significantly reduced without performance degradation. Low-latency and low-complexity hardware architecture for the proposed JVDD algorithm was proposed, which makes Viterbi decoding completed within one clock cycle. Viterbi Processor RTL synthesis results on a GF55nm process show that the gate count is 12K and the memory unit and the initial latency is reduced by 33% compared to the modified state exchange (MSE).

Dynamic Voltage Scaling Algorithms for Hard Real-Time Systems Using Efficient Slack Time Analysis (효율적인 슬랙 분석 방법에 기반한 경성 실시간 시스템에서의 동적 전압 조절 방안)

  • 김운석;김지홍;민상렬
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.12
    • /
    • pp.736-748
    • /
    • 2003
  • Dynamic voltage scaling(DVS), which adjusts the clock speed and supply voltage dynamically, is an effective technique in reducing the energy consumption of embedded real-time systems. The energy efficiency of a DVS algorithm largely depends on the performance of the slack estimation method used in it. In this paper, we propose novel DVS algorithms for periodic hard real-time tasks based on an improved slack estimation algorithm. Unlike the existing techniques, the proposed method can be applied to most priority-driven scheduling policies. Especially, we apply the proposed slack estimation method to EDF and RM scheduling policies. The experimental results show that the DVS algorithms using the proposed slack estimation method reduce the energy consumption by 20∼40 % over the existing DVS algorithms.

A Full Digital Multipath Generator (완전 디지털 다중경로발생기)

  • 권성재
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.7 no.2
    • /
    • pp.74-81
    • /
    • 2002
  • In general, a multipath generator consists of a time delay generator, phase rotator, and amplitude attenuator, and is implemented mostly in an analog manner. Analog, or partially analog versions of a multipath generator is disadvantageous in that they may suffer from problems associated with component aging and adjustment, signal fidelity degradation stemming from repeated A/D and D/A conversion use of high frequency to achieve fine i.e., subsample fractional tin delays. This paper presents the design and implementation methodology of a full digital multipath generator which can be used in performance evaluations of digital terrestrial television as well as communications, receivers. In particular, an efficient practical method is proposed which can achieve both integer and fractional time delays simultaneously, without placing restrictions on the allowable system master clock frequency. The proposed algorithm lends itself to minimizing hardware implementation cost by relegating some fixed put of the computation involved to an IBM PC. The proposed multipath generator occupies only a single digital board space, and its experimental results are provided to corroborate the proposed implementation methodology.

  • PDF

A Variable-Length FFT/IFFT Processor for Multi-standard OFDM Systems (다중표준 OFDM 시스템용 가변길이 FFT/IFFT 프로세서)

  • Yeem, Chang-Wan;Shin, Kyung-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.2A
    • /
    • pp.209-215
    • /
    • 2010
  • This paper describes a design of variable-length FFT/IFFT processor (VL_FCore) for OFDM-based multi-standard communication systems. The VL_FCore adopts in-place single-memory architecture, and uses a hybrid structure of radix-4 and radix-2 DIF algorithms to accommodate various FFT lengths in the range of $N=64{\times}2^k\;(0{\leq}k{\leq}7)$. To achieve both memory size reduction and the improved SQNR, a two-step conditional scaling technique is devised, which conditionally scales the intermediate results of each computational stage. The performance analysis results show that the average SQNR's of 64~8,192-point FFT's are over 60-dB. The VL_FCore synthesized with a $0.35-{\mu}m$ CMOS cell library has 23,000 gates and 32 Kbytes memory, and it can operate with 75-MHz@3.3-V clock. The 64-point and 8,192-point FFT's can be computed in $2.25-{\mu}s$ and $762.7-{\mu}s$, respectively, thus it satisfies the specifications of various OFDM-based systems.

Performance Comparison between Hardware & Software Cache Partitioning Techniques (하드웨어 캐시 파티셔닝과 소프트웨어 캐시 파티셔닝의 성능 비교)

  • Park, JiWoong;Yeom, HeonYoung;Eom, Hyeonsang
    • Journal of KIISE
    • /
    • v.42 no.2
    • /
    • pp.177-182
    • /
    • 2015
  • The era of multi-core processors has begun since the limit of the clock speed has been reached. These days, multi-core technology is used not only in desktops, servers, and table PCs, but also in smartphones. In this architecture, there is always interference between processes, because of the sharing of system resources. To address this problem, cache partitioning is used, which can be roughly divided into two types: software and hardware cache partitioning. When it comes to dynamic cache partitioning, hardware cache partitioning is superior to software cache partitioning, because it needs no page copy. In this paper, we compare the effectiveness of hardware and software cache partitioning on the AMD Opteron 6282 SE, which is the only commodity processor providing hardware cache partitioning, to see whether this technique can be effectively deployed in dynamic environments.

Development and Positioning Accuracy Assessment of Precise Point Positioning Algorithms based on GPS Code-Pseudorange Measurements (GPS 코드의사거리 기반 정밀단독측위(PPP) 알고리즘 개발 및 측위 정확도 평가)

  • Park, Kwan Dong;Kim, Ji Hye;Won, Ji Hye;Kim, Du Sik
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.1
    • /
    • pp.47-54
    • /
    • 2014
  • Precise Point Positioning (PPP) algorithms using GPS code pseudo-range measurements were developed and their accuracy was validated for the purpose of implementing them on a portable device. The group delay, relativistic effect, and satellite-antenna phase center offset models were applied as fundamental corrections for PPP. GPS satellite orbit and clock offsets were taken from the International GNSS Service official products which were interpolated using the best available algorithms. Tropospheric and ionospheric delays were obtained by applying mapping functions to the outputs from scientific GPS data processing software and Global Ionosphere Maps, respectively. When the developed algorithms were tested for four days of data, the horizontal and vertical positioning accuracies were 0.8-1.6 and 1.6-2.2 meters, respectively. This level of performance is comparable to that of Differential GPS, and further improvements and fine-tuning of this suite of PPP algorithms and its implementation at a portable device should be utilized in a variety of surveying and Location-Based Service applications.