• Title/Summary/Keyword: Clock drift rate

Search Result 5, Processing Time 0.02 seconds

Time Synchronization Algorithm using the Clock Drift Rate and Reference Signals Between Two Sensor Nodes (클럭 표류율과 기준 신호를 이용한 두 센서 노드간 시간 동기 알고리즘)

  • Kim, Hyoun-Soo;Jeon, Joong-Nam
    • The KIPS Transactions:PartC
    • /
    • v.16C no.1
    • /
    • pp.51-56
    • /
    • 2009
  • Time synchronization algorithm in wireless sensor networks is essential to various applications such as object tracking, data encryption, duplicate detection, and precise TDMA scheduling. This paper describes CDRS that is a time synchronization algorithm using the Clock Drift rate and Reference Signals between two sensor nodes. CDRS is composed of two steps. At first step, the time correction is calculated using offset and the clock drift rate between the two nodes based on the LTS method. Two nodes become a synchronized state and the time variance can be compensated by the clock drift rate. At second step, the synchronization node transmits reference signals periodically. This reference signals are used to calculate the time difference between nodes. When this value exceeds the maximum error tolerance, the first step is performed again for resynchronization. The simulation results on the performance analysis show that the time accuracy of the proposed algorithm is improved, and the energy consumption is reduced 2.5 times compared to the time synchronization algorithm with only LTS, because CDRS reduces the number of message about 50% compared to LTS and reference signals do not use the data space for timestamp.

Improved MAC Protocol Synchronization Algorithm using Compensating value in Wireless Mesh Networks (무선메쉬네트워크환경에서 보정계수를 이용한 MAC프로토콜 동기화 개선 알고리즘)

  • Yun, Sang-Man;Lee, Soon-Sik;Lee, Sang-Wook;Jeon, Seong-Geun;Lee, Woo-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.10
    • /
    • pp.2218-2226
    • /
    • 2009
  • TDMA based MAC protocol supporting wireless mesh network has many advantage rather than 802.11 DCF/EDCA protocol based on packet. But TDMA based MAC protocol require new synchronization method because of mobile point oscillator's difference, and distributed environments. This thesis propose synchronization method for TDMA based MAC protocol. It divides MP(Mobile Points) states into 4 types. If MP is in sync mode, it schedules TDMA local start time in time skew interval using beacon. It proposes compensation algorithms to compensate time skew caused by clock drift. This proposal show that general time error and clock drift rate value reduced and get synchronized result.

Fault Tolerant Clock Management Scheme in Sensor Networks (센서 네트워크에서 고장 허용 시각 관리 기법)

  • Hwang So-Young;Baek Yun-Ju
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.9A
    • /
    • pp.868-877
    • /
    • 2006
  • Sensor network applications need synchronized time to the highest degree such as object tracking, consistent state updates, duplicate detection, and temporal order delivery. In addition, reliability issues and fault tolerance in sophisticated sensor networks have become a critical area of research today. In this paper, we proposed a fault tolerant clock management scheme in sensor networks considering two cases of fault model such as network faults and clock faults. The proposed scheme restricts the propagation of synchronization error when there are clock faults of nodes such as rapid fluctuation, severe changes in drift rate, and so on. In addition, it handles topology changes. Simulation results show that the proposed method has about $1.5{\sim}2.0$ times better performance than TPSN in the presence of faults.

Energy Efficiency Enhancement of TICK -based Fuzzy Logic for Selecting Forwarding Nodes in WSNs

  • Ashraf, Muhammad;Cho, Tae Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.9
    • /
    • pp.4271-4294
    • /
    • 2018
  • Communication cost is the most important factor in Wireless Sensor Networks (WSNs), as exchanging control keying messages consumes a large amount of energy from the constituent sensor nodes. Time-based Dynamic Keying and En-Route Filtering (TICK) can reduce the communication costs by utilizing local time values of the en-route nodes to generate one-time dynamic keys that are used to encrypt reports in a manner that further avoids the regular keying or re-keying of messages. Although TICK is more energy efficient, it employs no re-encryption operation strategy that cannot determine whether a healthy report might be considered as malicious if the clock drift between the source node and the forwarding node is too large. Secure SOurce-BAsed Loose Synchronization (SOBAS) employs a selective encryption en-route in which fixed nodes are selected to re-encrypt the data. Therefore, the selection of encryption nodes is non-adaptive, and the dynamic network conditions (i.e., The residual energy of en-route nodes, hop count, and false positive rate) are also not focused in SOBAS. We propose an energy efficient selection of re-encryption nodes based on fuzzy logic. Simulation results indicate that the proposed method achieves better energy conservation at the en-route nodes along the path when compared to TICK and SOBAS.

Low Power MAC Protocol Design for Wireless Sensor Networks using Recursive Estimation Methods (회귀적 추정 방식을 이용한 무선 센서 네트워크용 저전력 MAC 프로토콜)

  • Pak, Wooguil
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.3
    • /
    • pp.239-246
    • /
    • 2014
  • In the context of wireless sensor networks, one of major issues is energy conservation. For low power communication, by utilizing our experimental results for the relation between clock drift and synchronization interval, we designed a new protocol which can support a wide range of duty cycles for applications with very low traffic rate and insensitive delay. The transmission (TX) node in the protocol synchronizes with the reception (RX) node very before transmitting a packet, and it can adaptively estimate the synchronization error size according to the synchronization interval from minutes to hours. We conducted simulations and a testbed implementation to show the efficacy of the proposed protocol. We found that our protocol substantially outperforms other state-of-the-art protocols, resulting in order-of-magnitude increase in network lifetime over a variety of duty cycles.