• 제목/요약/키워드: Clinker reaction

검색결과 36건 처리시간 0.023초

용강에 의한 돌로마이트 클링커의 침식거동 (Corrosion Behavior of Dolomite Clinkers by Molten Steel)

  • 박재원;홍기곤
    • 한국세라믹학회지
    • /
    • 제35권12호
    • /
    • pp.1301-1307
    • /
    • 1998
  • 1550$^{\circ}C$~1600$^{\circ}C$의 온도범위에서 stamp 재의 원료로서 사용되는 돌로마이트 클링커의 용강에 의한 침식거동을 연구 하였다. 돌로마이트 클링커중에 생성되는 magnesioferrite(MgO · Fe2O3)와 dicalciumferrite(2CaO · Fe2O3) 중에서 용강중으로의 용출은 dicalciumferrite가 선행되었으며, dicalciumferrite가 용출된 가동면 부분에서는 magnesioferrite의 보호층이 생성되었다. Fe2O3가 첨가되지 않은 돌로마이트 클링커의 경우에는 침투된 용강과 클링커중의 MgO와 CaO가 반응하여 각각 magnesioferrote와 dicalciumferrite를 생성하지만, 생성된 magnesioferrite는 MgO의 skeleton을 유지하면서 magnesioferrite를 생성하는 반면에 CaO는 skeleton이 소멸되어 magnesioferrite의 입계상의 형태로 존재하였다. Fe2O3가 첨가된 돌로마이트 클링커의 경우에는 출발물질중에 존재하던 magnesioferrite의 분해반응에 의하여 생성된 Fe2O3가 클링커의 가동면으로 이동하여 MgO와의 반응에 의하여 magnesioferrite를 생성함으로써 용강의 침투를 억제하며, Fe2O3가 가동면으로 확산된 층에서는 CaO가 Fe2O3-free CaO로서 존재하였다. 용강의 온도가 상승됨에 따라 Fe2O3가 함유되어 있지 않는 돌로마이트 클링커의 경우에는 dicalciumferrite의 생성깊이는 증가되는 반면에 돌로마이트 클링커의 가동면에 생성되는 magnesioferrite의 층은 미약하였다. 반면에, Fe2O3가 함유된 돌로마이트 클링커는 용강의 온도가 상승됨에 따라 dicalciumferrite의 분해반응에 의하여 생성된 CaO 성분이 용강중으로 용출되는 양이 증가되어 magnesioferrite의 층이 두꺼울 뿐만 아니라 magnesioferrite의 입성장도 수반되었다.

  • PDF

건설폐기물을 활용한 이산화탄소 반응경화 시멘트 제조에 관한 연구 (Manufacturing of Calcium Silicate Cement Using Construction Waste)

  • 이향선;손배근;송훈
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 봄 학술논문 발표대회
    • /
    • pp.47-48
    • /
    • 2023
  • In the domestic industrial sector, greenhouse gases emitted from the cement industry account for about 10%, with most of them generated during the cement clinker calcination process. During the calcination process, 57% of carbon dioxide is emitted from the decarbonation reaction of limestone, 30% from fuel consumption, and 13% from electricity usage. In response to these issues, the cement industry is making efforts to reduce carbon dioxide emissions by developing technologies for raw material substitution and conversion, improving process efficiency by utilizing low-carbon alternative heat sources, developing CO2 capture and utilization technologies, and recycling waste materials. In addition, due to the limitations in purchasing and storing industrial byproducts generated from industrial facilities, many studies are underway regarding the recycling of construction waste. Therefore, this study analyzes the manufacture of calcium silicate cement (CSC), which can store carbon dioxide as carbonate minerals in industrial facilities, and aims to contribute to the development of environmentally friendly regenerated cement using construction waste.

  • PDF

알루민산삼칼슘 클링커와 석고의 수화에 의한 에트린자이트 미세다공체 생성거동 (Formation Behavior of Microporous Ettringite Body by Hydration of Tricalciumaluminate Clinker and Gypsum)

  • 나현엽;송태웅
    • 한국세라믹학회지
    • /
    • 제45권11호
    • /
    • pp.734-738
    • /
    • 2008
  • Ettringite$(3CaO{\cdot}Al_2O_3{\cdot}3CaSO_4{\cdot}32H_2O)$, one of the hydrated phase of Portland cement is usually formed in the early stage of hydration by the reaction of tricalciumaluminate$(C_3A)$ and gypsum. The rapid and strong crystal growth of separated rod-shaped ettringite have been utilized for the preparation of special cements of rapid setting, high strength and non-shrinking properties. The ettringite also has been noticed as a promising materials for the immobilization of various waste ions because of its unique crystal structure which has abundant channels and exchangeable ionic compounds. In this study, the formation and growth behavior of the ettringite was investigated in the system $C_3A-CaSO_4-H_2O$ using $C_3A$ clinker and gypsum to obtain a microporous body for waste ion immobilization. Ettringite was revealed to form by the dissolution-precipitation mechanism and the bulk body was by the entangled growth of rod-shaped ettringite crystals. The hardened body was composed of nearly pure rod-shaped ettringite interlocked each other with adequate mechanical strength. The homogeneity of structure, pore size, specific surface area and porosity of the hardened body were influenced by reaction temperature, water/powder ratio and the curing time. The hardened body prepared with water/powder ratio of 1 at $24^{\circ}C$ for one day showed excellent morphological properties for the purposed materials.

Cement의 수화반응 물리특성에 미치는 ZnO의 영향 (The Effect of ZnO on the Hydration Reaction and Physical Properties of Cement)

  • 김홍기;추용식;이경희;송명신
    • 한국세라믹학회지
    • /
    • 제34권4호
    • /
    • pp.399-405
    • /
    • 1997
  • With the increase of ZnO content, heat of hydration decreased. For specimens containing ZnO more than 0.6 wt.%, the compressive stength of cement cured for 28 days could not be measured because setting was not occurred. With the increase of ZnO content, Blaine specific surface area of cement was decreased and the residue of 45 ${\mu}{\textrm}{m}$ and 90 ${\mu}{\textrm}{m}$ was increased when cement was ground. That is, grindability became worse as ZnO increased in clinker. The difference of color as a function of ZnO content could not be observed, but in the excess of amount of ZnO added, color became more white and reddish yellow.

  • PDF

The property of inorganic insulation material depending on CSA contents and atmospheric steam curing condition

  • Kim, Tae-Yeon;Chu, Yong-Sik;Seo, Sung-Kwan;Yoon, Seog-Young
    • Journal of Ceramic Processing Research
    • /
    • 제19권5호
    • /
    • pp.407-412
    • /
    • 2018
  • In this study, we have made a cement based inorganic insulation material and added CSA (Hauyne Clinker) to reduce the demolding time and enhance the handling workability. CSA contents were varied by 0%, 1%, 3%, 5% and the atmospheric steam curing was tried for enhancing the compressive strength. As the CSA contents are increased to 5%, a rapid reaction of hydration caused the sinking of the slurry. So, the setting-retarder was added to control the reaction of hydration. By this, the sinking of the slurry was controlled but the height of the green body after expansions was a little bit lowered. In the CSA-added slurry, it was possible to demold within 24 hours and in case of CSA 5%-added, the sufficient workability was secured. Atmospheric steam curing (temperatures $-40{\sim}80^{\circ}C$, for 6~10 hrs.) was attempted to improve the compressive strength and found that an excellent strength of 0.25 MPa was achieved at $80^{\circ}C$ for 8 hrs. Specific gravity was about $0.12{\sim}0.13g/cm^3$ and heat conductivity was about 0.045 W/mK in all specimens. This strategy significantly improves the compressive strength of CSA 5%-added specimen up to 25% compared to without CSA added specimen.

광화제 첨가가 포틀랜드 시멘트의 Tricalcium Silicate 생성에 미치는 영향 (Effects of Mineralizer Addition on the Formation of Tricalcium Silicate in Portland Cement)

  • 김인태;이창봉;김윤호
    • 한국세라믹학회지
    • /
    • 제31권12호
    • /
    • pp.1417-1422
    • /
    • 1994
  • Effect of MgO, CaSO4, and CaF2 addition on the formation of clinker minerals in portland cement have been investigated by measuring the amounts of free-CaO and C3S in the fired specimens and analyzing the Mg and S concentration in C3S and C2S. It was found that CaSO4 inhibited C3S formation but MgO addition offset this effect of CaSO4. MgO addition also enhanced the mineralizing effect of CaSO4+CaF2, resulting in the acceleration of C3S formation. It was suggested that Mg might inhibit the formation of sulphate compounds rim around C2S and thus C2S+CaOlongrightarrowC3S reaction was facilitated.

  • PDF

포틀랜드시멘트 클링커융액의 결정화에 관한 연구($K_2O$와 MgO의 영향) (Crystallization of the Liquid Phase in Portland Cement Clinker (Effects of $K_2O$ and MgO))

  • 한기성;문정연;김용국
    • 한국세라믹학회지
    • /
    • 제19권3호
    • /
    • pp.236-240
    • /
    • 1982
  • The crystallization of melts with similar composition of Portland cement liquid containing 0-5% $K_2O$ was studied by differential thermal and isothermal reaction. The devitrification of melts was occured in stages, the recognizable amount of CaO was appered at the first step, then proto-C3A was crystallized. The latter showed to occur in both cubic C3A and Ca-ferrite crystallization. Batches lost remarkable amounts of $K_2O$ as a result of volatilization during melting and the solubility of $K_2O$ in the melts was unstable.

  • PDF

열적성질을 고려한 콘크리트의 수화발열특성에 관한 연구 (The Effect of Thermal Properties on Temperature Development of Concrete)

  • 손명수;박연동;김훈;김호영;이양수;강석화
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.97-102
    • /
    • 1997
  • In this study, a predictive method which was modified from KIshi's model for the temperature development of concrete was developed by using mineral compounds of clinker and pozzolans. Temperature dependent heat generation of reaction was also considered. Specific heat considering the effect of mix proportion and temperature was calculated with experimental data in the literatures. Thermal conductivity considering the effect of mix proportion and temperature was experimentally investigated. Through this research it was found that the developed method considering thermal properties accurately predicted adiabatic temperature rise of concrete without the experiment. It was also found that the thermal conductivity of concrete could be predicted by the volume ratio of each component of mix proportion and was independent of temperature within the normal climatic range.

  • PDF

Sustainable concrete mix design for a target strength and service life

  • Tapali, Julia G.;Demis, Sotiris;Papadakis, Vagelis G.
    • Computers and Concrete
    • /
    • 제12권6호
    • /
    • pp.755-774
    • /
    • 2013
  • Considering the well known environmental issues of cement manufacturing (direct and indirect levels of $CO_2$ emissions), clinker replacement by supplementary cementing materials (SCM) can be a very promising first step in reducing considerably the associated emissions. However, such a reduction is possible up to a particular level of SCM utilization, influenced by the rate of its pozzolanic reaction. In this study a (4-step) structured methodology is proposed in order to be able to further adjust the concrete mix design of a particular SCM, in achieving additional reduction of the associated levels of $CO_2$ emissions and being at the same time accepted from a derived concrete strength and service life point of view. On this note, the aim of this study is twofold. To evaluate the environmental contribution of each concrete component and to provide the best possible mix design configuration, balanced between the principles of sustainability (low environmental cost) and durability (accepted concrete strength and service life ). It is shown that such a balance can be achieved, by utilising SCM by-products in the concrete mix, reducing in this way the fixed environmental emissions without compromising the long-term safety and durability of the structure.

Calciumsilicate의 생성반응에 미치는 $SO_3$ 영향(III) (Effect of $SO_3$ on Calciumsilicate Formation(III))

  • 임은극;박병철
    • 한국세라믹학회지
    • /
    • 제21권3호
    • /
    • pp.221-230
    • /
    • 1984
  • In this study an investigation was made to determine optimum ratio between $SO_3$, MgO and $K_2O$ that maximizes $C_2S$ formation in Clinkering reaction Using response surface analysis method. It was proved that 1) Residual $K_2O$ int he clinker should be converted to $K_2SO_4$ because $K_2SO_4$ has less effect on the burnability than $K_2O$, 2) Optimum ratio if $SO_3$/K2O is 1.5, 3) Optimun balance between $CaSO_4$ and MgO is to be adjusted to such a level that w/o SO3=0.7(w/o MgO-2).4) In case of lack of $K_2O$ free CaO was minimized when $K_2SO_4$=2.3w/o and MgO=1.5w/o but if remaining $K_2O$ was 2w/o free CaI was minimized in the level that $K_2SO_4$=2.3w/o and MgO =1.5 w/o but if remaining $K_2O$ was 2 w/o free CaO was minimized in the level that $K_2SO_4$=4.5w/o and MgO =3.0 w/o.

  • PDF