• Title/Summary/Keyword: Climate sensitivity

Search Result 227, Processing Time 0.028 seconds

Evaluating the Performance of APEX-Paddy Model using the Monitoring Data of Paddy Fields in Iksan, South Korea (국내 논필지 모니터링 자료를 이용한 APEX-Paddy 모델 적용성 평가)

  • Kamruzzaman, Mohammad;Cho, Jaepil;Choi, Soon-Kun;Song, Jung-Hun;Song, Inhong;Hwang, Syewoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.1
    • /
    • pp.1-16
    • /
    • 2020
  • The APEX model has been developed for assessing agricultural management efforts and their effects on soil and water at the field scale as well as more complex multi-subarea landscapes, whole farms, and watersheds. Recently, a key component of APEX application, named APEX-Paddy, has been modified for simulating water quality by considering paddy rice management practices. In this study, the performance of the APEX-Paddy model was evaluated using field data at Iksan experimental paddy sites in Korea. The discharge and pollutant load data during 2013 and 2014 were used to both manually and automatically calibrate the model. The APEX auto-calibration tool (APEX-CUTE 4.1) was used for model calibration and sensitivity analysis. Results indicate that APEX-Paddy reasonably performs in predicting runoff discharge rate and nitrogen yield. However, sediment and phosphorus yield is not correctly predicted due to the limitation of model schemes. With APEX-Paddy, the performance in reproducing the discharge and nitrogen yield is found to be a satisfactory level after manual calibration. The manually calibrated model performed better than the automatically calibrated model in nearly all comparisons. For runoff, manual calibration reduced PBIAS while R2 and NSE values of the automatically calibrated model were the same as the manual calibration. For T-N, NSE and PBIAS were reduced when using manual calibration, whereas R2 value was the same as manual calibration. The limitation of the APEX-Paddy model for predicting sediment, as well as the phosphorous yield, was discussed in this study.

Optimization of PRISM Parameters and Digital Elevation Model Resolution for Estimating the Spatial Distribution of Precipitation in South Korea (남한 강수량 분포 추정을 위한 PRISM 매개변수 및 수치표고모형 최적화)

  • Park, Jong-Chul;Jung, Il-Won;Chang, Hee-Jun;Kim, Man-Kyu
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.3
    • /
    • pp.36-51
    • /
    • 2012
  • The demand for a climatological dataset with a regular spaced grid is increasing in diverse fields such as ecological and hydrological modeling as well as regional climate impact studies. PRISM(Precipitation-Elevation Regressions on Independent Slopes Model) is a useful method to estimate high-altitude precipitation. However, it is not well discussed over the optimization of PRISM parameters and DEM(Digital Elevation Model) resolution in South Korea. This study developed the PRISM and then optimized parameters of the model and DEM resolution for producing a gridded annual average precipitation data of South Korea with 1km spatial resolution during the period 2000-2005. SCE-UA (Shuffled Complex Evolution-University of Arizona) method employed for the optimization. In addition, sensitivity analysis investigates the change in the model output with respect to the parameter and the DEM spatial resolution variations. The study result shows that maximum radius within which station search will be conducted is 67km. Minimum radius within which all stations are included is 31km. Minimum number of stations required for cell precipitation and elevation regression calculation is four. Optimizing DEM resolution is $1{\times}1km$. This study also shows that the PRISM output very sensitive to DEM spatial resolution variations. This study contributes to improving the accuracy of PRISM technique as it applies to South Korea.

Effect of Gamma Irradiation on the Germination and Growth of Astragalus membranaceus (황기 발아 및 생장에 미치는 감마선 조사 효과)

  • Kim, Dong-Hwi;Park, Hee-Woon;Park, Chun-Geun;Sung, Jung-Sook;Seong, Nak-Sul
    • Korean Journal of Medicinal Crop Science
    • /
    • v.16 no.4
    • /
    • pp.238-241
    • /
    • 2008
  • Astragalus membranaceus have used as a medicinal herb and food in Korea. It is limited its harvest by diseases, pests and climate, therefore the main objective of Astragalus membranaceus breeding is the development of varities with the resistance for them. We used mutation breeding to obtain the genetic resources with the resistance for them. Pocheon, the local variety of Astragalus membranaceus, was treated with different levels Y-ray of $100{\sim}600$ Gy. There were investigated the sensitivity on germination and survival rate, plant height and the other characters. Germination rate from 4th day after sowing was significantly decreased above the 300 Gy as compared to the control. Compared to control, the decrements of survival rate were 32, 43, 63, 72, 84 and 89% for 100, 200, 300, 400, 500 and 600 Gy, respectively. The sensitive characters to Y-ray were plant height, number of branches per plant and survival rate, and the insensitive characters were number of leaves, length of leaf, and width of leaf. Plant height, number of branches per plant and survival rate seemed to be appropriate characters to decide the radiosensitivity, and radiation doses of $200{\sim}300$ Gy ($LD_{50}$) were recommend for mutation breeding.

Spatio-Temporal Changes in Seasonal Multi-day Cumulative Extreme Precipitation Events in the Republic of Korea (우리나라 사계절 다중일 누적 극한강수현상의 시·공간적 변화)

  • Choi, Gwangyong
    • Journal of the Korean association of regional geographers
    • /
    • v.21 no.1
    • /
    • pp.98-113
    • /
    • 2015
  • In this study, spatial and temporal patterns and changes in seasonal multi-day cumulative extreme precipitation events defined by maximum 1~5 days cumulative extreme precipitation observed at 61 weather stations in the Republic of Korea for the recent 40 years(1973~2012) are examined. It is demonstrated that the magnitude of multi-day cumulative extreme precipitation events is greatest in summer, while their sensitivity relative to the variations of seasonal total precipitation is greatest in fall. According to analyses of linear trends in the time series data, the most noticeable increases in the magnitude of multi-day cumulative extreme precipitation events are observable in summer with coherences amongst 1~5 days cumulative extreme precipitation events. In particular, the regions with significant increases include Gyeonggi province, western Gangwon province and Chungcheong province, and as the period for the accumulation of extreme precipitation increases from 1 day to 5 days, the regions with significantly-increasing trends are extended to the Sobaek mountain ridge. It is notable that at several scattered stations, the increases of 1~2 days cumulative extreme precipitation events are observed even in winter. It is also observed that most distinct increasing tendency of the ratio of these multi-day cumulative extreme precipitation to seasonal total precipitation appears in winter. These results indicate that proactive actions are needed for spatial and temporal changes in not only summer but also other seasonal multi-day cumulative extreme precipitation events in Korea.

  • PDF

Assessment of Photochemical Reflectance Index Measured at Different Spatial Scales Utilizing Leaf Reflectometer, Field Hyper-Spectrometer, and Multi-spectral Camera with UAV (드론 장착 다중분광 카메라, 소형 필드 초분광계, 휴대용 잎 반사계로부터 관측된 서로 다른 공간규모의 광화학반사지수 평가)

  • Ryu, Jae-Hyun;Oh, Dohyeok;Jang, Seon Woong;Jeong, Hoejeong;Moon, Kyung Hwan;Cho, Jaeil
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.1055-1066
    • /
    • 2018
  • Vegetation indices on the basis of optical characteristics of vegetation can represent various conditions such as canopy biomass and physiological activity. Those have been mostly developed with the large-scaled applications of multi-band optical sensors on-board satellites. However, the sensitivity of vegetation indices for detecting vegetation features will be different depending on the spatial scales. Therefore, in this study, the investigation of photochemical reflectance index (PRI), known as one of useful vegetation indices for detecting photosynthetic ability and vegetation stress, under the three spatial scales was conducted using multi-spectral camera installed in unmanned aerial vehicle (UAV),field spectrometer, and leaf reflectometer. In the leaf scale, diurnal PRI had minimum values at different local-time according to the compass direction of leaf face. It meant that each leaf in some moment had the different degree of light use efficiency (LUE). In early growth stage of crop, $PRI_{leaf}$ was higher than $PRI_{stands}$ and $PRI_{canopy}$ because the leaf scale is completely not governed by the vegetation cover fraction.In the stands and canopy scales, PRI showed a large spatial variability unlike normalized difference vegetation index (NDVI). However, the bias for the relationship between $PRI_{stands}$ and $PRI_{canopy}$ is lower than that in $NDVI_{stands}$ and $NDVI_{canopy}$. Our results will help to understand and utilize PRIs observed at different spatial scales.

Development and Verification of NEMO based Regional Storm Surge Forecasting System (NEMO 모델을 이용한 지역 폭풍해일예측시스템 개발 및 검증)

  • La, Nary;An, Byoung Woong;Kang, KiRyong;Chang, Pil-Hun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.6
    • /
    • pp.373-383
    • /
    • 2020
  • In this study we established an operational storm-surge system for the northwestern pacific ocean, based on the NEMO (Nucleus for European Modeling of the Ocean). The system consists of the tide and the surge models. For more accurate storm surge prediction, it can be completed not only by applying more precise depth data, but also by optimal parameterization at the boundaries of the atmosphere and ocean. To this end, we conducted several sensitivity experiments related to the application of available bathymetry data, ocean bottom friction coefficient, and wind stress and air pressure on the ocean surface during August~September 2018 and the case of typhoon SOULIK. The results of comparison and verification are presented here, and they are compared with POM (Princeton Ocean Model) based Regional Tide Surge forecasting Model (RTSM). The results showed that the RTSM_NEMO model had a 29% and 20% decrease in Bias and RMSE respectively compared to the RTSM_POM model, and that the RTSM_NEMO model had a lower overall error than the RTSM_POM model for the case of typhoon SOULIK.

A Study on Early Childhood Teachers' Perceptions of ESD-Oriented Ecological Art Activities (지속가능발전교육(ESD) 지향 생태미술활동에 관한 유아교사의 인식연구)

  • Young-Ran, Jung;Hee-Jung, Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.291-301
    • /
    • 2023
  • The purpose of this study is to examine the perception of early childhood teachers on ecological art activities oriented to education for sustainable development. The research results are as follows. First, Early childhood teachers recognized the visual art of natural media, the pursuit of community values, and the participation and communication of social members as educational significance of ecological art activities. And difficulties in practicing ecological art were recognized as lack of educational environment, lack of ecological art teaching materials and specific examples, and teachers' lack of understanding of ecological art. Also, they recognized that ecological art activities foster core competencies in art experience area, such as nature-friendly communication skills, eco-friendly sensibility, and creative convergence skills. Second, regarding ecological art activities and sustainable development education, early childhood teachers considered the difficulties in practice as lack of awareness about sustainable development, lack of play meia and materials, lack of educational policies and support, and insufficient teacher training programs. Also, regarding the SDGs that can be practiced in ecological art activities, teachers were found to be highly aware of 'grow affordable and clean energy', 'improve clean water and sanitation', 'provide quality education' in the order. In the contents of education for sustainable development that can be practiced in ecological art activities, teachers are given the order of 'climate change response', 'clean energy', 'water and sanitation', 'quality education', 'health and well-being' and 'marine ecosystem'. was highly recognized. If an ecological art activity program is developed, the rate of responding that it will be used is high, so it is considered that the development of an ESD-oriented ecological art activity program is urgent.

Soil Respiration Rates in Cryptomeria japonica D. Don, Chamaecyparis obtusa Endl., and Quercus glauca Thunb. Stands (삼나무, 편백, 종가시나무 임분의 토양호흡에 관한 연구)

  • Gyeongrin Baek;Gyeongwon Baek;Byeonggil Choi;Hojin Kim;Jihyun Lee;Choonsig Kim
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.2
    • /
    • pp.71-79
    • /
    • 2023
  • The quantification of soil respiration rates is important to understand carbon cycles of forest ecosystems. Soil respiration rates were assessed using Li-8100A soil flux system in one evergreen broadleaved (Quercus glauca Thunb.) and two coniferous (Cryptomeria japonica D. Don and Chamaecyparis obtusa Endl.) stands from May 2020 to April 2022 in southern Korea. Monthly variations of soil respiration rates were higher in the Q. glauca stand than in the C. japonica and the C. obtusa stands. The mean soil respiration rates were significantly higher in the Q. glauca stand (2.63µmol m-2 s-1) than in the C. japonica (0.93µmol m-2 s-1) and C. obtusa (0.99µmol m-2 s-1) stands. The three stands showed exponential relationships between soil respiration rates and soil temperature (R2 = 0.44-0.80). The sensitivity of temperature (Q10 values) to soil respiration rates was highest in the Q. glauca stand (5.13), followed by the C. obtusa (3.10) and C. japonica (2.58) stands. These results indicate that soil respiration rates can be increased more in evergreen broadleaved stands than in coniferous stands under enhanced soil temperature.

An Evaluation of Crack Resistance for Slag Asphalt Concrete Mixture Using Steel Slag Aggregates (제강슬래그 골재를 사용한 슬래그 아스팔트 혼합물의 균열저항성 평가)

  • Kim, Nakseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.71-77
    • /
    • 2023
  • With the continuous industrial development, not only natural resource depletion, waste generation, but also various weather conditions are becoming more frequent. Efforts are continuing to recycle industrial by-products to overcome the climate crisis and save resources. Slag is a representative by-product generated in the steel industry, and it is characterized by improving rutting resistance and moisture sensitivity by increasing strength and reducing deformation when used as a material for asphalt concrete. On the other hand, slag has expansion properties so it is used as a relatively low-value-added material such as embankment and refilling materials. In order to expand the application of slag, an experiment was conducted to evaluate the crack resistance of slag asphalt concrete pavement. As a result of the indirect tensile strength test, it was found that the asphalt mixture using slag aggregate showed a value 1.13 times higher than that of the general HMA with the same particle size, and the toughness was 1.17 units, improving crack resistance. In addition, it was found that the failure number of the 4-point beam fatigue experiment and the slag asphalt mixture was 20,409, which was more than doubled compared to the general HMA. Furthermore, Overlay Test showed a tensile load residual rate of 4 times or more, improving crack resistance to repeated fatigue. Accordingly, the use of slag aggregate will likely have various advantages in improving the performance of asphalt concrete pavement.

Physical habitat characteristics of freshwater crayfish Cambaroides similis (Koelbel, 1892) (Arthropoda, Decapoda) in South Korea

  • Jin-Young Kim;Yong Ju Kwon;Ye Ji Kim;Yeong-Deok Han;Jung Soo Han;Chae Hui An;Yong Su Park;Dongsoo Kong
    • Journal of Ecology and Environment
    • /
    • v.47 no.4
    • /
    • pp.200-210
    • /
    • 2023
  • Background: Cambaroides similis is an endangered candidate species living in the stream of South Korea. Freshwater crayfish is known to decline rapidly not only domestically, but also internationally. Its decline is projected to be further exacerbated due to climate change. Understanding physical characteristics of the habitat is crucial for the conservation of an organism. However, comprehensive data regarding the distribution and physical habitat characteristics of C. similis are currently unavailable in South Korea. Thus, the objective of this study was to ascertain preferred ranges for water depth, current velocity, and streambed substrate of C. similis using Weibull model. Results: In this study, C. similis was found at 59 sites across 12 regions in South Korea. Its optimal water depth preferences ranged from 11.9 cm to 30.1 cm. Its current velocity preferences ranged from 9.8 cm s-1 to 29.1 cm s-1. Its substrate preferences ranged from -5.1 𝜱m to -2.5 𝜱m. Median values of central tendency were determined as follows: water depth of 21.4 cm, current velocity of 21.2 cm s-1, and substrate of -4.1 𝜱m. Mean values of central tendency were determined as follows: water depth of 21.8 cm, current velocity of 22.0 cm s-1, and substrate of -4.4 𝜱m. Mode values of central tendency were determined as follows: water depth of 21.7 cm, current velocity of 20.1 cm s-1, and substrate of -3.7 𝜱m. Conclusions: Based on habitat suitability analysis, physical microhabitat characteristics of C. similis within a stream were identified as Run section with coarse particle substrate, low water depth, and slow current velocity. Due to high sensitivity of these habitats to environmental changes, prioritized selection and assessment of threats should be carried out as a primary step.