• Title/Summary/Keyword: Climate risk

Search Result 560, Processing Time 0.034 seconds

Urban Flood Risk Assessment Considering Climate Change Using Bayesian Probability Statistics and GIS: A Case Study from Seocho-Gu, Seoul (베이지안 확률통계와 GIS를 연계한 기후변화 도시홍수 리스크 평가: 서울시 서초구를 대상으로)

  • LEE, Sang-Hyeok;KANG, Jung-Eun;PARK, Chang-Sug
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.4
    • /
    • pp.36-51
    • /
    • 2016
  • This study assessed urban flood risk using a Bayesian probability statistical method and GIS incorporating a climate change scenario. Risk is assessed based on a combination of hazard probability and its consequences, the degree of impact. Flood probability was calculated on the basis of a Bayesian model and future flood occurrence likelihoods were estimated using climate change scenario data. The flood impacts include human and property damage. Focusing on Seocho-gu, Seoul, the findings are as follows. Current flood probability is high in areas near rivers, as well as low lying and impervious areas, such as Seocho-dong and Banpo-dong. Flood risk areas are predicted to increase by a multiple of 1.3 from 2030 to 2050. Risk assessment results generally show that human risk is relatively high in high-rise residential zones, whereas property risk is high in commercial zones. The magnitude of property damage risk for 2050 increased by 6.6% compared to 2030. The proposed flood risk assessment method provides detailed spatial results that will contribute to decision making for disaster mitigation.

Raising Public Recognition of Climate Change Adaptation to Ensure Food Safety

  • Cho, Sun-Duk;Lee, Hwa Jung;Kim, Gun-Hee
    • Journal of Food Hygiene and Safety
    • /
    • v.28 no.3
    • /
    • pp.207-212
    • /
    • 2013
  • Recent changes in the global climate environment have resulted in a wide variety of climate-related disasters, including floods, tidal waves, forest fires, droughts, etc. In addition, global warming raises the risk of food poisoning, which may increase the spread of infectious diseases and alter their structure. Under these circumstances, it is necessary to provide accurate and persuasive information to consumers so that they can be fully informed of climate change and alter their behavior accordingly. Therefore, the intention of this study was to develop posters and contents for image production related to climate change and food safety. The posters are focused on consumers with headings such as "Climate Change Threatening Food Safety", "Earth getting warmer, your dining table is at risk", "Warning signs ahead for the globe", and more. Five poster drafts were selected initially, and a survey was carried out amongst 1,087 people regarding their preferences, with the most preferred design chosen. The images related to climate change and food safety defined climate change, how it relates to food safety, the risks it poses to the food industry, and lastly, how the public can respond in the future. Therefore, to further communicate the importance of food safety to consumers, the development, education, and promotion of these contents should be performed to provide safety information to consumers in the future.

An Integrated Modeling Approach for Predicting Potential Epidemics of Bacterial Blossom Blight in Kiwifruit under Climate Change

  • Kim, Kwang-Hyung;Koh, Young Jin
    • The Plant Pathology Journal
    • /
    • v.35 no.5
    • /
    • pp.459-472
    • /
    • 2019
  • The increasing variation in climatic conditions under climate change directly influences plant-microbe interactions. To account for as many variables as possible that may play critical roles in such interactions, the use of an integrated modeling approach is necessary. Here, we report for the first time a local impact assessment and adaptation study of future epidemics of kiwifruit bacterial blossom blight (KBB) in Jeonnam province, Korea, using an integrated modeling approach. This study included a series of models that integrated both the phenological responses of kiwifruit and the epidemiological responses of KBB to climatic factors with a 1 km resolution, under the RCP8.5 climate change scenario. Our results indicate that the area suitable for kiwifruit cultivation in Jeonnam province will increase and that the flowering date of kiwifruit will occur increasingly earlier, mainly due to the warming climate. Future epidemics of KBB during the predicted flowering periods were estimated using the Pss-KBB Risk Model over the predicted suitable cultivation regions, and we found location-specific, periodic outbreaks of KBB in the province through 2100. Here, we further suggest a potential, scientifically-informed, long-term adaptation strategy using a cultivar of kiwifruit with a different maturity period to relieve the pressures of future KBB risk. Our results clearly show one of the possible options for a local impact assessment and adaptation study using multiple models in an integrated way.

International Research on Geotechnical Risk & Landslide Hazards (지반공학적 재해 및 산사태 위험도 분석에 관한 연구)

  • Yoon, Gil-Lim;Yoon, Yeo-Won;Kim, Hong-Yeon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.444-455
    • /
    • 2009
  • Great concerns on geotechnical risk & hazard assessment have been increased due to human and economic damage by natural disasters with recent global climate changes. In this paper, geotechnical problems in particular, landslides which is interested in European countries and North America, were mainly discussed. For these, 18 key topics on geotechnical risk and hazards which had been discussed at the LARAM 2008 workshop in Italy were analyzed after grouping by subjects. Main topic contents consisted of applications such as field measurement, early warning systems, uncertainty analysis of parameters using radar, optical data and statistical theory and so on. And the problems related to analysis of vulnerability and deformation due to earthquakes, investigation of gas zone using seismic reflection data in a landslide area, risk quantification and hazard assessment of landslide movements and multi-dimensional analysis for stability of complex slopes were attracted. Also, there were studies on risk matters of cultural heritage, the blockglide of clayey ground, simulations of debris flows based on GIS, quantification of the failure processes of rock slopes, a meshless method for 3D crack modelling, and finally risk assessment for cryological processes due to global warming.

  • PDF

An early warning and decision support system to reduce weather and climate risks in agricultural production

  • Nakagawa, Hiroshi;Ohno, Hiroyuki;Yoshida, Hiroe;Fushimi, Erina;Sasaki, Kaori;Maruyama, Atsushi;Nakano, Satoshi
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.303-303
    • /
    • 2017
  • Japanese agriculture has faced to several threats: aging and decrease of farmer population, global competition, and the risk of climate change as well as harsh and variable weather. On the other hands, the number of large scale farms is increasing, because farm lands have been being aggregated to fewer numbers of farms. Cost cutting, development of efficient ways to manage complicatedly scattered farm lands, maintaining yield and quality under variable weather conditions, are required to adapt to changing environments. Information and communications technology (ICT) would contribute to solve such problems and to create innovative technologies. Thus we have been developing an early warning and decision support system to reduce weather and climate risks for rice, wheat and soybean production in Japan. The concept and prototype of the system will be shown. The system consists of a weather data system (Agro-Meteorological Grid Square Data System, AMGSDS), decision support contents where information is automatically created by crop models and delivers information to users via internet. AMGSDS combines JMA's Automated Meteorological Data Acquisition System (AMeDAS) data, numerical weather forecast data and normal values, for all of Japan with about 1km Grid Square throughout years. Our climate-smart system provides information on the prediction of crop phenology, created with weather forecast data and crop phenology models, as an important function. The system also makes recommendations for crop management, such as nitrogen-topdressing, suitable harvest time, water control, pesticide spray. We are also developing methods to perform risk analysis on weather-related damage to crop production. For example, we have developed an algorism to determine the best transplanting date in rice under a given environment, using the results of multi-year simulation, in order to answer the question "when is the best transplanting date to minimize yield loss, to avoid low temperature damage and to avoid high temperature damage?".

  • PDF

Corporation's Adaptation to Climate Change Related Natural Disasters : Embedding Resiliency in Supply Chain - A Study on Climate Change Related Natural Disaster Adaptation for Corporations -

  • Pak, Myong Sop;Kim, In Sun
    • THE INTERNATIONAL COMMERCE & LAW REVIEW
    • /
    • v.64
    • /
    • pp.239-264
    • /
    • 2014
  • Two types of responses to climate change exist. First is climate mitigation which includes efforts of reducing CO2 and GHG emissions. Second response is climate adaptation process which is establishing climate resilience in the supply chain. The two are inherently different since mitigation strategy focus on eliminating the source of climate change and is long term in nature but adaptation strategy is moderating the impact of potential or current climate change. In order to embed climate resilience in the supply chain, mitigation strategies and adaption strategies must be implemented simultaneously. Corporation's adaptation to climate change related natural disaster can be seen as a response that includes mitigation and adaptation strategies simultaneously. A comprehensive climate change resilience supply chain approach has to be developed. This paper illustrated guidelines and adaptation process framework businesses can utilize in order to build climate resilience. Screening process before the actual assessment of risk was introduced as well as the whole adaptation process of establishing information system and strengthening climate-related operational flexibility.

  • PDF

Application of SAD Curves in Assessing Climate-change Impacts on Spatio-temporal Characteristics of Extreme Drought Events (극한가뭄의 시공간적 특성에 대한 기후변화의 영향을 평가하기 위한 SAD 곡선의 적용)

  • Kim, Hosung;Park, Jinhyeog;Yoon, Jaeyoung;Kim, Sangdan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6B
    • /
    • pp.561-569
    • /
    • 2010
  • In this study, the impact of climate change on extreme drought events is investigated by comparing drought severity-area-duration curves under present and future climate. The depth-area-duration analysis for characterizing an extreme precipitation event provides a basis for analysing drought events when storm depth is replaced by an appropriate measure of drought severity. In our climate-change impact experiments, the future monthly precipitation time series is based on a KMA regional climate model which has a $27km{\times}27km$ spatial resolution, and the drought severity is computed using the standardized precipitation index. As a result, agricultural drought risk is likely to increase especially in short duration, while hydrologic drought risk will greatly increase in all durations. Such results indicate that a climate change vulnerability assessment for present water resources supply system is urgent.

Exploring the Complexities of Dams' Impact on Transboundary Flow: A Meta-Analysis of Climate and Basin Factors

  • Abubaker Omer;Hyungjun Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.177-177
    • /
    • 2023
  • The impacts of dams on transboundary flow are complex and challenging to project and manage, given the potential moderating influence of a broad range of anthropogenic and natural factors. This study presents a global meta-analysis of 168 studies that examines the effect magnitude of dams on downstream seasonal, annual flow, and hydrological extremes risk on 39 hotspot transboundary river basins. The study also evaluates the impact of 13 factors, such as climate, basin characteristics, dams' design and types, level of transboundary cooperation, and socioeconomic indicators, on the heterogeneity of outcomes. The findings reveal that moderators significantly influence the impact of dams on downstream flow, leading to considerable heterogeneity in outcomes. Transboundary cooperation emerges as the key factor that determines the severity of dams' effect on both dry and wet season's flows at a significance level of 0.01 to 0.05, respectively. Specifically, the presence of water-supply and irrigation dams has a significant (0.01) moderating effect on dry-season flow across basins with high transboundary cooperation. In contrast, for wet-season flow, the basin's vulnerability to climate extremes is associated with a large negative effect size. The various moderators have varying degrees of influence on the heterogeneity of outcomes, with the aridity index, population density, GDP, and risk level of hydro-political tension being the most significant factors for dry-season flow, and the risk level of hydro-political tension and basin vulnerability to climate extremes being the most significant for wet-season flow. The results suggest that transboundary cooperation is crucial for managing the impacts of dams on downstream flow, and that various other factors, such as climate, basin characteristics, and socioeconomic indicators, have significant moderating effects on the outcomes. Thus, context-specific approaches are necessary when predicting and managing the impacts of dams on transboundary flow.

  • PDF

Development of Climate Change Adaptation Plan for Kurunegala City, Sri Lanka (스리랑카 Kurunegala시의 기후변화 적응 계획 개발)

  • Reyes, Nash Jett DG.;Cho, Hanna;Geronimo, Franz Kevin F.;Jeon, Minsu;Kim, Leehyung
    • Journal of Wetlands Research
    • /
    • v.21 no.4
    • /
    • pp.354-364
    • /
    • 2019
  • Sri Lanka is an island nation susceptible to climate-related disasters and extreme weather events. Kurunegala City is the developing capital city of the North-Western Province of Sri Lanka. Changes in rainfall patterns and a steadily increasing annual average temperature amounting to 0.69±0.37℃ were observed in the city area. Generally, urban areas are at risk due to the lack of climate change adaptation provisions incorporated in the development plans. This study was conducted to investigate the characteristics of Krunegala City, Sri Lanka and develop an appropriate climate change adaptation plan for the city. Site investigation and qualitative risk assessment were conducted to devise a plan relevant to the climate change adaptation needs of the city. Qualitative risk analyses revealed that drinking water, water resources, and health and infrastructure risks were among the major concerns in Kurunegala City. Low impact development (LID) technologies were found to be applicable to induce non-point source pollutant reduction, relieve urban heat island phenomenon, and promote sound water circulation systems. These technologies can be effective means of alleviating water shortage and reducing urban temperature. The measures and strategies presented in this study can serve as reference for developing climate change adaptation plans in areas experiencing similar adverse effects of climate change.

Evaluation of hydrologic risk of drought in Boryeong according to climate change scenarios using scenario-neutral approach (시나리오 중립 접근법을 활용한 기후변화 시나리오에 따른 보령시 가뭄의 수문학적 위험도 평가)

  • Kim, Jiyoung;Han, Young Man;Seo, Seung Beom;Kim, Daeha;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.3
    • /
    • pp.225-236
    • /
    • 2024
  • To prepare for the impending climate crisis, it is necessary to establish policies and strategies based on scientific predictions and analyses of climate change impacts. For this, climate change should be considered, however, in conventional scenario-led approach, researchers select and utilize representative climate change scenarios. Using the representative climate change scenarios makes prediction results high uncertain and low reliable, which leads to have limitations in applying them to relevant policies and design standards. Therefore, it is necessary to utilize scenario-neutral approach considering possible change ranges due to climate change. In this study, hydrologic risk was estimated for Boryeong after generating 343 time series of climate stress and calculating drought return period from bivariate drought frequency analysis. Considering 18 scenarios of SSP1-2.6 and 18 scenarios of SSP5-8.5, the results indicated that the hydrologic risks of drought occurrence with maximum return period ranged 0.15±0.025 within 20 years and 0.3125±0.0625 within 50 years, respectively. Therefore, it is necessary to establish drought policies and countermeasures in consideration of the corresponding hydrologic risks in Boryeong.